login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238964
Size of divisor lattice in canonical order.
4
0, 1, 2, 4, 3, 7, 12, 4, 10, 12, 20, 32, 5, 13, 17, 28, 33, 52, 80, 6, 16, 22, 36, 24, 46, 72, 54, 84, 128, 192, 7, 19, 27, 44, 31, 59, 92, 64, 75, 116, 176, 135, 204, 304, 448, 8, 22, 32, 52, 38, 72, 112, 40, 82, 96, 148, 224, 104, 160, 186, 280, 416, 216, 324, 480, 704, 1024
OFFSET
0,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
FORMULA
T(n,k) = A062799(A063008(n,k)). - Andrew Howroyd, Mar 24 2020
EXAMPLE
Triangle T(n,k) begins:
0;
1;
2, 4;
3, 7, 12;
4, 10, 12, 20, 32;
5, 13, 17, 28, 33, 52, 80;
6, 16, 22, 36, 24, 46, 72, 54, 84, 128, 192;
...
MAPLE
with(numtheory):
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> (p-> add(nops(factorset(d)), d=divisors
(p)))(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Mar 24 2020
PROG
(PARI) \\ here b(n) is A062799.
b(n)={sumdiv(n, d, omega(d))}
N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{concat(vector(9, n, Row(n-1)))} \\ Andrew Howroyd, Mar 24 2020
CROSSREFS
Cf. A238953 in canonical order.
Sequence in context: A257504 A207625 A238953 * A035507 A138612 A246680
KEYWORD
nonn,tabf
AUTHOR
Sung-Hyuk Cha, Mar 07 2014
EXTENSIONS
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 24 2020
STATUS
approved