login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238962
Number of perfect partitions in graded colexicographic order.
2
1, 1, 2, 3, 4, 8, 13, 8, 20, 26, 44, 75, 16, 48, 76, 132, 176, 308, 541, 32, 112, 208, 252, 368, 604, 818, 1076, 1460, 2612, 4683, 64, 256, 544, 768, 976, 1888, 2316, 3172, 3408, 5740, 7880, 10404, 14300, 25988, 47293, 128, 576, 1376, 2208, 2568, 2496, 5536, 7968
OFFSET
0,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014, Table A.1 entry |P^T(s)|.
FORMULA
T(n,k) = A074206(A036035(n,k)). - Andrew Howroyd, Apr 25 2020
EXAMPLE
Triangle T(n,k) begins:
1;
1;
2, 3;
4, 8, 13;
8, 20, 26, 44, 75;
16, 48, 76, 132, 176, 308, 541;
32, 112, 208, 252, 368, 604, 818, 1076, 1460, 2612, 4683;
...
PROG
(PARI) \\ here b(n) is A074206.
N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
b(n)={if(!n, 0, my(sig=factor(n)[, 2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r, k)*(-1)^(r-k))))}
Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])}
{ for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Aug 30 2020
CROSSREFS
Row sums are A035341.
Cf. A002033 in graded colexicographic order.
Sequence in context: A226947 A272615 A356188 * A238975 A098348 A131420
KEYWORD
nonn,tabf
AUTHOR
Sung-Hyuk Cha, Mar 07 2014
EXTENSIONS
Offset changed and terms a(44) and beyond from Andrew Howroyd, Apr 25 2020
STATUS
approved