login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238963
Number of divisors of A063008(n,k).
9
1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 20, 16, 24, 32, 27, 36, 48, 64, 8, 14, 18, 24, 20, 30, 40, 32, 36, 48, 64, 54, 72, 96, 128, 9, 16, 21, 28, 24, 36, 48, 25, 40, 45, 60, 80, 48, 64, 72, 96, 128, 81, 108, 144, 192, 256, 10, 18, 24, 32, 28, 42, 56, 30, 48, 54, 72, 96, 50, 60, 80, 90, 120, 160, 64, 96, 128, 108, 144, 192, 256, 162, 216, 288, 384, 512
OFFSET
0,2
COMMENTS
Equivalent to A074139 but using canonical order.
LINKS
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283
FORMULA
T(n, k) = A000005(A063008(n,k)).
Trow(n) = List_{p in Partitions(n)} (Product_{t in p}(t + 1)). # Peter Luschny, Dec 11 2023
EXAMPLE
Triangle begins:
1;
2;
3, 4;
4, 6, 8;
5, 8, 9, 12, 16;
6, 10, 12, 16, 18, 24, 32;
7, 12, 15, 20, 16, 24, 32, 27, 36, 48, 64;
...
MAPLE
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> numtheory[tau](mul(ithprime(i)
^x[i], i=1..nops(x))), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Mar 24 2020
PROG
(PARI) \\ here b(n) is A000005.
b(n)={numdiv(n)}
N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{ for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 24 2020
(SageMath)
def A238963row(n):
return list(product(t + 1 for t in p) for p in Partitions(n))
print([A238963row(n) for n in range(10)]) # Peter Luschny, Dec 11 2023
CROSSREFS
Row sums are A074141.
Sequence in context: A241088 A074139 A355026 * A342940 A331527 A326575
KEYWORD
nonn,tabf
AUTHOR
Sung-Hyuk Cha, Mar 07 2014
EXTENSIONS
Offset corrected by Andrew Howroyd, Mar 24 2020
STATUS
approved