Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 13 2023 15:53:16
%S 1,2,3,4,4,6,8,5,8,9,12,16,6,10,12,16,18,24,32,7,12,15,20,16,24,32,27,
%T 36,48,64,8,14,18,24,20,30,40,32,36,48,64,54,72,96,128,9,16,21,28,24,
%U 36,48,25,40,45,60,80,48,64,72,96,128,81,108,144,192,256,10,18,24,32,28,42,56,30,48,54,72,96,50,60,80,90,120,160,64,96,128,108,144,192,256,162,216,288,384,512
%N Number of divisors of A063008(n,k).
%C Equivalent to A074139 but using canonical order.
%H Alois P. Heinz, <a href="/A238963/b238963.txt">Rows n = 0..30, flattened</a>
%H S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283
%F T(n, k) = A000005(A063008(n,k)).
%F Trow(n) = List_{p in Partitions(n)} (Product_{t in p}(t + 1)). # _Peter Luschny_, Dec 11 2023
%e Triangle begins:
%e 1;
%e 2;
%e 3, 4;
%e 4, 6, 8;
%e 5, 8, 9, 12, 16;
%e 6, 10, 12, 16, 18, 24, 32;
%e 7, 12, 15, 20, 16, 24, 32, 27, 36, 48, 64;
%e ...
%p b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
%p [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
%p T:= n-> map(x-> numtheory[tau](mul(ithprime(i)
%p ^x[i], i=1..nops(x))), b(n$2))[]:
%p seq(T(n), n=0..9); # _Alois P. Heinz_, Mar 24 2020
%o (PARI) \\ here b(n) is A000005.
%o b(n)={numdiv(n)}
%o N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
%o Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
%o { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 24 2020
%o (SageMath)
%o def A238963row(n):
%o return list(product(t + 1 for t in p) for p in Partitions(n))
%o print([A238963row(n) for n in range(10)]) # _Peter Luschny_, Dec 11 2023
%Y Row sums are A074141.
%Y Cf. A000005, A000041, A063008, A074139.
%K nonn,tabf
%O 0,2
%A _Sung-Hyuk Cha_, Mar 07 2014
%E Offset corrected by _Andrew Howroyd_, Mar 24 2020