login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of perfect partitions in graded colexicographic order.
2

%I #18 Aug 30 2020 20:18:10

%S 1,1,2,3,4,8,13,8,20,26,44,75,16,48,76,132,176,308,541,32,112,208,252,

%T 368,604,818,1076,1460,2612,4683,64,256,544,768,976,1888,2316,3172,

%U 3408,5740,7880,10404,14300,25988,47293,128,576,1376,2208,2568,2496,5536,7968

%N Number of perfect partitions in graded colexicographic order.

%H Andrew Howroyd, <a href="/A238962/b238962.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)

%H S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arXiv:1405.5283 [math.NT], 2014, Table A.1 entry |P^T(s)|.

%F T(n,k) = A074206(A036035(n,k)). - _Andrew Howroyd_, Apr 25 2020

%e Triangle T(n,k) begins:

%e 1;

%e 1;

%e 2, 3;

%e 4, 8, 13;

%e 8, 20, 26, 44, 75;

%e 16, 48, 76, 132, 176, 308, 541;

%e 32, 112, 208, 252, 368, 604, 818, 1076, 1460, 2612, 4683;

%e ...

%o (PARI) \\ here b(n) is A074206.

%o N(sig)={prod(k=1, #sig, prime(k)^sig[k])}

%o b(n)={if(!n, 0, my(sig=factor(n)[,2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k))))}

%o Row(n)={apply(s->b(N(s)), [Vecrev(p) | p<-partitions(n)])}

%o { for(n=0, 6, print(Row(n))) } \\ _Andrew Howroyd_, Aug 30 2020

%Y Row sums are A035341.

%Y Cf. A002033 in graded colexicographic order.

%Y Cf. A036035, A074206, A238975.

%K nonn,tabf

%O 0,3

%A _Sung-Hyuk Cha_, Mar 07 2014

%E Offset changed and terms a(44) and beyond from _Andrew Howroyd_, Apr 25 2020