login
A238967
Maximal size of an antichain in canonical order.
2
1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 2, 3, 4, 5, 7, 10, 1, 2, 3, 4, 4, 6, 8, 7, 10, 14, 20, 1, 2, 3, 4, 4, 6, 8, 7, 8, 11, 15, 13, 18, 25, 35, 1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 10, 14, 16, 22, 30, 19, 26, 36, 50, 70, 1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 9, 11, 15, 17, 23, 31, 12, 19, 26, 22, 30, 41, 56, 35, 48, 66, 91, 126
OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
FORMULA
T(n,k) = A096825(A063008(n,k)). - Andrew Howroyd, Mar 25 2020
EXAMPLE
Triangle T(n,k) begins:
1;
1;
1, 2;
1, 2, 3;
1, 2, 3, 4, 6;
1, 2, 3, 4, 5, 7, 10;
1, 2, 3, 4, 4, 6, 8, 7, 10, 14, 20;
...
MAPLE
with(numtheory):
f:= n-> (m-> add(`if`(bigomega(d)=m, 1, 0),
d=divisors(n)))(iquo(bigomega(n), 2)):
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> f(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Mar 26 2020
PROG
(PARI) \\ here b(n) is A096825.
b(n)={my(h=bigomega(n)\2); sumdiv(n, d, bigomega(d)==h)}
N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{ for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
CROSSREFS
Cf. A238954 in canonical order.
Sequence in context: A329795 A329794 A238954 * A066657 A119444 A060040
KEYWORD
nonn,tabf
AUTHOR
Sung-Hyuk Cha, Mar 07 2014
EXTENSIONS
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020
STATUS
approved