login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238967
Maximal size of an antichain in canonical order.
2
1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 2, 3, 4, 5, 7, 10, 1, 2, 3, 4, 4, 6, 8, 7, 10, 14, 20, 1, 2, 3, 4, 4, 6, 8, 7, 8, 11, 15, 13, 18, 25, 35, 1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 10, 14, 16, 22, 30, 19, 26, 36, 50, 70, 1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 9, 11, 15, 17, 23, 31, 12, 19, 26, 22, 30, 41, 56, 35, 48, 66, 91, 126
OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
FORMULA
T(n,k) = A096825(A063008(n,k)). - Andrew Howroyd, Mar 25 2020
EXAMPLE
Triangle T(n,k) begins:
1;
1;
1, 2;
1, 2, 3;
1, 2, 3, 4, 6;
1, 2, 3, 4, 5, 7, 10;
1, 2, 3, 4, 4, 6, 8, 7, 10, 14, 20;
...
MAPLE
with(numtheory):
f:= n-> (m-> add(`if`(bigomega(d)=m, 1, 0),
d=divisors(n)))(iquo(bigomega(n), 2)):
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> f(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Mar 26 2020
PROG
(PARI) \\ here b(n) is A096825.
b(n)={my(h=bigomega(n)\2); sumdiv(n, d, bigomega(d)==h)}
N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{ for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
CROSSREFS
Cf. A238954 in canonical order.
Sequence in context: A329795 A329794 A238954 * A066657 A119444 A060040
KEYWORD
nonn,tabf
AUTHOR
Sung-Hyuk Cha, Mar 07 2014
EXTENSIONS
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020
STATUS
approved