login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximal size of an antichain in canonical order.
2

%I #14 Mar 26 2020 18:47:37

%S 1,1,1,2,1,2,3,1,2,3,4,6,1,2,3,4,5,7,10,1,2,3,4,4,6,8,7,10,14,20,1,2,

%T 3,4,4,6,8,7,8,11,15,13,18,25,35,1,2,3,4,4,6,8,5,8,9,12,16,10,14,16,

%U 22,30,19,26,36,50,70,1,2,3,4,4,6,8,5,8,9,12,16,9,11,15,17,23,31,12,19,26,22,30,41,56,35,48,66,91,126

%N Maximal size of an antichain in canonical order.

%H Andrew Howroyd, <a href="/A238967/b238967.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)

%H S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.

%F T(n,k) = A096825(A063008(n,k)). - _Andrew Howroyd_, Mar 25 2020

%e Triangle T(n,k) begins:

%e 1;

%e 1;

%e 1, 2;

%e 1, 2, 3;

%e 1, 2, 3, 4, 6;

%e 1, 2, 3, 4, 5, 7, 10;

%e 1, 2, 3, 4, 4, 6, 8, 7, 10, 14, 20;

%e ...

%p with(numtheory):

%p f:= n-> (m-> add(`if`(bigomega(d)=m, 1, 0),

%p d=divisors(n)))(iquo(bigomega(n), 2)):

%p b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->

%p [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):

%p T:= n-> map(x-> f(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:

%p seq(T(n), n=0..9); # _Alois P. Heinz_, Mar 26 2020

%o (PARI) \\ here b(n) is A096825.

%o b(n)={my(h=bigomega(n)\2); sumdiv(n, d, bigomega(d)==h)}

%o N(sig)={prod(k=1, #sig, prime(k)^sig[k])}

%o Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}

%o { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 25 2020

%Y Cf. A238954 in canonical order.

%Y Cf. A063008, A096825.

%K nonn,tabf

%O 0,4

%A _Sung-Hyuk Cha_, Mar 07 2014

%E Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 25 2020