OFFSET
1,1
COMMENTS
Eric Angelini's "box" map box(i,j) is defined as follows (see A330240). Write i, j in base 10 aligned to the right, say
i = bcd...ef
j = .gh...pq
Then the decimal expansion of box(i,j) is |b-0|, |c-g|, |d-h|, ..., |e-p|, |f-q|.
For example, box(12345,909) = 12644.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 1..25000
FORMULA
a(n) < n except for a(1) = 2. - M. F. Hasler, Dec 07 2019
EXAMPLE
For n = 1 the smallest k producing a square is 2 (as box(1,2) = 1, this 1 being the square of 1);
For n = 2 the smallest k producing a square is 1 (as box(2,1) = 1, this 1 being the square of 1);
For n = 3 the smallest k producing a square is 2 (as box(3,2) = 1, this 1 being the square of 1);
For n = 5 the smallest k producing a square is 3 (as box(5,1) = 4, this 4 being the square of 2);
For n = 16 the smallest k producing a square is 12 (as box(16,12) = 4, this 4 being the square of 2).
MATHEMATICA
BOX[a_, b_]:=FromDigits@Abs[Subtract@@PadLeft[IntegerDigits/@{a, b}]]; Table[k=1; While[!IntegerQ[a=Sqrt@BOX[k, n]]||a==0, k++]; k, {n, 100}] (* Giorgos Kalogeropoulos, Aug 20 2021 *)
PROG
(PARI) box(x, y) = if (x==0 || y==0, x+y, 10*box(x\10, y\10) + abs((x%10) - (y%10)))
a(n) = for (k=1, oo, my (b=box(n, k)); if (b && issquare(b), return (b))) \\ Rémy Sigrist, Dec 07 2019
(PARI) A329794(n)={n>1&&for(k=1, n, issquare(A330240(n, k))&&return(k)); 2} \\ M. F. Hasler, Dec 07 2019
(Python)
from sympy.ntheory.primetest import is_square
def positive_square(n): return n > 0 and is_square(n)
def box(i, j):
si = str(i); sj = str(j); m = max(len(si), len(sj))
si, sj = si.zfill(m), sj.zfill(m)
return int("".join([str(abs(int(si[k])-int(sj[k]))) for k in range(m)]))
def a(n):
k = 1
while not positive_square(box(k, n)): k += 1
return k
print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Aug 20 2021
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Dec 07 2019, based on a posting by Eric Angelini to the Sequence Fans Mailing List, Dec 07 2019. (Thanks to Rémy Sigrist for correcting the definition.)
STATUS
approved