login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238970
The number of nodes at even level in divisor lattice in canonical order.
3
1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 6, 8, 3, 5, 6, 8, 9, 12, 16, 4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 5, 8, 11, 14, 12, 18, 24, 13, 20, 23, 30, 40, 24, 32, 36, 48, 64, 41, 54, 72, 96, 128
OFFSET
0,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
FORMULA
From Andrew Howroyd, Mar 25 2020: (Start)
T(n,k) = A038548(A063008(n,k)).
T(n,k) = A238963(n,k) - A238971(n,k).
T(n,k) = ceiling(A238963(n,k)/2). (End)
EXAMPLE
Triangle T(n,k) begins:
1;
1;
2, 2;
2, 3, 4;
3, 4, 5, 6, 8;
3, 5, 6, 8, 9, 12, 16;
4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32;
...
MAPLE
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> ceil(numtheory[tau](mul(ithprime(i)
^x[i], i=1..nops(x)))/2), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Mar 25 2020
PROG
(PARI) \\ here b(n) is A038548.
b(n)={ceil(numdiv(n)/2)}
N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{ for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
CROSSREFS
Cf. A238957 in canonical order.
Sequence in context: A112184 A112213 A238957 * A085755 A330216 A241952
KEYWORD
nonn,tabf
AUTHOR
Sung-Hyuk Cha, Mar 07 2014
EXTENSIONS
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020
STATUS
approved