Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Apr 24 2020 11:42:45
%S 1,1,2,2,2,3,4,3,4,5,6,8,3,5,6,8,9,12,16,4,6,8,10,8,12,16,14,18,24,32,
%T 4,7,9,12,10,15,20,16,18,24,32,27,36,48,64,5,8,11,14,12,18,24,13,20,
%U 23,30,40,24,32,36,48,64,41,54,72,96,128
%N The number of nodes at even level in divisor lattice in canonical order.
%H Andrew Howroyd, <a href="/A238970/b238970.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F From _Andrew Howroyd_, Mar 25 2020: (Start)
%F T(n,k) = A038548(A063008(n,k)).
%F T(n,k) = A238963(n,k) - A238971(n,k).
%F T(n,k) = ceiling(A238963(n,k)/2). (End)
%e Triangle T(n,k) begins:
%e 1;
%e 1;
%e 2, 2;
%e 2, 3, 4;
%e 3, 4, 5, 6, 8;
%e 3, 5, 6, 8, 9, 12, 16;
%e 4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32;
%e ...
%p b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
%p [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
%p T:= n-> map(x-> ceil(numtheory[tau](mul(ithprime(i)
%p ^x[i], i=1..nops(x)))/2), b(n$2))[]:
%p seq(T(n), n=0..9); # _Alois P. Heinz_, Mar 25 2020
%o (PARI) \\ here b(n) is A038548.
%o b(n)={ceil(numdiv(n)/2)}
%o N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
%o Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
%o { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 25 2020
%Y Cf. A238957 in canonical order.
%Y Cf. A038548, A063008, A238963, A238971.
%K nonn,tabf
%O 0,3
%A _Sung-Hyuk Cha_, Mar 07 2014
%E Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 25 2020