login
A238972
The number of arcs from even to odd level vertices in divisor lattice in canonical order.
3
0, 1, 1, 2, 2, 4, 6, 2, 5, 6, 10, 16, 3, 7, 9, 14, 17, 26, 40, 3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96, 4, 10, 14, 22, 16, 30, 46, 32, 38, 58, 88, 68, 102, 152, 224, 4, 11, 16, 26, 19, 36, 56, 20, 41, 48, 74, 112, 52, 80, 93, 140, 208, 108, 162, 240, 352, 512
OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
FORMULA
From Andrew Howroyd, Mar 28 2020: (Start)
T(n,k) = A238950(A063008(n,k)).
T(n,k) = A238964(n,k) - A238973(n,k).
T(n,k) = ceiling(A238964(n,k)/2). (End)
EXAMPLE
Triangle T(n,k) begins:
0;
1;
1, 2;
2, 4, 6;
2, 5, 6, 10, 16;
3, 7, 9, 14, 17, 26, 40;
3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96;
...
MAPLE
with(numtheory):
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> ceil((p-> add(nops(factorset(d)), d=divisors
(p)))(mul(ithprime(i)^x[i], i=1..nops(x)))/2), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Mar 28 2020
CROSSREFS
Cf. A238959 in canonical order.
Sequence in context: A278217 A191674 A238959 * A207193 A319579 A286631
KEYWORD
nonn,tabf
AUTHOR
Sung-Hyuk Cha, Mar 07 2014
EXTENSIONS
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 28 2020
STATUS
approved