OFFSET
1,1
COMMENTS
Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A295862, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios. Guide to more ratio-sums and limiting power-ratios:
****
Sequence A ratio-sum for A limiting power-ratio for A
EXAMPLE
ratio-sum = 6.21032710946618494227967...
MATHEMATICA
a[0] = 1; a[1] = 3; b[0] = 2; b[1 ] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n];
j = 1; While[j < 13, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295862 *)
g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
Take[RealDigits[s, 10][[1]], 100] (* A296469 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Dec 18 2017
STATUS
approved