OFFSET
0,3
FORMULA
E.g.f.: arcsin(arcsinh(x)) (odd powers only, absolute values).
E.g.f.: log(sqrt(1 - log(i*x + sqrt(1 - x^2))^2) - i*log(i*x + sqrt(1 - x^2))), where i is the imaginary unit (odd powers only).
a(n) ~ 2 * (2*n)! / sqrt(Pi*(4 + Pi^2)*n). - Vaclav Kotesovec, Dec 13 2017
EXAMPLE
arcsinh(arcsin(x)) = x/1! + 8*x^5/5! + 56*x^7/7! + 8000*x^9/9! + 342144*x^11/11! + 68623488*x^13/13! + ...
MATHEMATICA
nmax = 17; Table[(CoefficientList[Series[ArcSinh[ArcSin[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
nmax = 17; Table[(CoefficientList[Series[Log[Sqrt[1 - Log[I x + Sqrt[1 - x^2]]^2] - I Log[I x + Sqrt[1 - x^2]]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 13 2017
STATUS
approved