login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296465
Expansion of e.g.f. arctanh(arctanh(x)) (odd powers only).
5
1, 4, 88, 4688, 459520, 71876352, 16428530688, 5167215464448, 2140879726411776, 1130276555155243008, 740796870212763254784, 590192778209307913617408, 561748717440430309770264576, 629564244208933873601143111680, 820602153197407426121272991416320, 1230877720962045060728502509025361920
OFFSET
0,2
FORMULA
E.g.f.: arctan(arctan(x)) (odd powers only, absolute values).
E.g.f.: (log(2 - log(1 - x) + log(1 + x)) - log(2 + log(1 - x) - log(1 + x)))/2 (odd powers only).
a(n) ~ (2*n)! * ((exp(2) + 1)/(exp(2) - 1))^(2*n+1). - Vaclav Kotesovec, Dec 13 2017
EXAMPLE
arctanh(arctanh(x)) = x/1! + 4*x^3/3! + 88*x^5/5! + 4688*x^7/7! + 459520*x^9/9! + ...
MATHEMATICA
nmax = 16; Table[(CoefficientList[Series[ArcTanh[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
nmax = 16; Table[(CoefficientList[Series[(Log[2 - Log[1 - x] + Log[1 + x]] - Log[2 + Log[1 - x] - Log[1 + x]])/2, {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 13 2017
STATUS
approved