

A296482


Decimal expansion of limiting powerratio for A295952; see Comments.


3



7, 0, 9, 0, 7, 0, 0, 6, 8, 7, 3, 5, 5, 1, 4, 2, 8, 8, 1, 1, 6, 7, 7, 4, 7, 5, 2, 6, 5, 0, 3, 3, 7, 1, 2, 1, 5, 9, 2, 1, 8, 4, 1, 1, 4, 6, 6, 7, 4, 7, 0, 1, 0, 3, 6, 6, 9, 0, 6, 0, 7, 5, 9, 3, 3, 6, 3, 2, 5, 5, 4, 8, 7, 9, 1, 6, 3, 6, 2, 1, 8, 8, 7, 8, 3, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n1) > g. The limiting powerratio for A is the limit as n>oo of a(n)/g^n, assuming that this limit exists. For A = A295952, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.


LINKS

Table of n, a(n) for n=1..86.


EXAMPLE

limiting powerratio = 7.090700687355142881167747526503371215921...


MATHEMATICA

a[0] = 1; a[1] = 5; b[0] = 2; b[1 ] = 3; b[2] = 4;
a[n_] := a[n] = a[n  1] + a[n  2] + b[n];
j = 1; While[j < 13, k = a[j]  j  1;
While[k < a[j + 1]  j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295952 *)
z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
Take[RealDigits[Last[h], 10][[1]], 120] (* A296482 *)


CROSSREFS

Cf. A001622, A295952, A296284, A296481.
Sequence in context: A178308 A320377 A213186 * A272429 A308157 A198555
Adjacent sequences: A296479 A296480 A296481 * A296483 A296484 A296485


KEYWORD

nonn,easy,cons


AUTHOR

Clark Kimberling, Jan 06 2018


STATUS

approved



