login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296284 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences. 33
1, 2, 9, 23, 52, 105, 199, 360, 639, 1098, 1857, 3098, 5123, 8416, 13763, 22434, 36485, 59242, 96087, 155728, 252255, 408487, 661292, 1070377, 1732317, 2803394, 4536465, 7340669, 11878002, 19219599, 31098591, 50319244, 81418955, 131739387, 213159600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.

EXAMPLE

a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5

a(2) = a(0) + a(1) + 2*b(0) = 9

Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, ...)

MATHEMATICA

a[0] = 1; a[1] = 2; b[0] = 3;

a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2];

j = 1; While[j < 10, k = a[j] - j - 1;

While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];

Table[a[n], {n, 0, k}]; (* A296284 *)

Table[b[n], {n, 0, 20}]    (* complement *)

CROSSREFS

Cf. A001622, A296245.

Sequence in context: A062445 A009304 A154118 * A115185 A091107 A133469

Adjacent sequences:  A296281 A296282 A296283 * A296285 A296286 A296287

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Dec 13 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 00:43 EDT 2020. Contains 333238 sequences. (Running on oeis4.)