login
A296282
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2
2, 4, 21, 115, 346, 797, 1647, 3164, 5801, 10285, 17802, 30271, 50803, 84434, 139317, 228647, 373778, 609265, 991403, 1610788, 2614335, 4238923, 6868858, 11125331, 18013845, 29161100, 47199305, 76387375, 123616440, 200036551, 323688895, 523764716, 847496451
OFFSET
0,1
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 25
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
MATHEMATICA
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296282 *)
Table[b[n], {n, 0, 20}] (* complement *)
CROSSREFS
Sequence in context: A071779 A107388 A233289 * A308763 A230690 A219745
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 13 2017
STATUS
approved