login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308763
a(n) = Sum_{d|n} d^(n-2).
1
1, 2, 4, 21, 126, 1394, 16808, 266305, 4785157, 100390882, 2357947692, 61978939050, 1792160394038, 56707753666594, 1946196290656824, 72061992352890881, 2862423051509815794, 121441386937936123331, 5480386857784802185940, 262145000003883417004506
OFFSET
1,2
LINKS
FORMULA
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^3)) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k-2) * x^k/(1 - (k*x)^k).
MATHEMATICA
a[n_] := DivisorSum[n, #^(n - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
PROG
(PARI) {a(n) = sigma(n, n-2)}
(PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^3)))))
(PARI) N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-(k*x)^k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 23 2019
STATUS
approved