login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308760
Sum of the largest parts of the partitions of n into 4 parts.
4
0, 0, 0, 0, 1, 2, 5, 9, 17, 25, 41, 57, 84, 112, 154, 197, 262, 325, 414, 506, 629, 751, 915, 1078, 1289, 1501, 1767, 2034, 2370, 2701, 3108, 3519, 4014, 4506, 5100, 5691, 6393, 7095, 7917, 8739, 9703, 10658, 11765, 12876, 14150, 15418, 16874, 18324, 19974
OFFSET
0,6
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (n-i-j-k).
a(n) = A308775(n) - A308733(n) - A308758(n) - A308759(n).
Conjectures from Colin Barker, Jun 23 2019: (Start)
G.f.: x^4*(1 + 2*x + 4*x^2 + 5*x^3 + 6*x^4 + 4*x^5 + 3*x^6) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5) - 3*a(n-6) - 4*a(n-7) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) - 2*a(n-12) - 2*a(n-13) - a(n-14) + a(n-16) for n>15.
(End)
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 17 25 41 57 84 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 07 2019
MATHEMATICA
Table[Sum[Sum[Sum[n - i - j - k, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 22 2019
STATUS
approved