

A296489


Decimal expansion of ratiosum for A293358; see Comments.


3



3, 5, 3, 5, 9, 1, 7, 3, 9, 3, 5, 1, 5, 2, 5, 9, 3, 5, 0, 7, 1, 6, 8, 0, 2, 2, 3, 2, 2, 4, 8, 5, 5, 0, 6, 7, 3, 3, 5, 5, 7, 5, 3, 4, 6, 2, 2, 7, 4, 4, 6, 8, 4, 2, 8, 0, 2, 2, 1, 0, 8, 9, 2, 8, 7, 4, 5, 0, 0, 5, 1, 2, 4, 2, 3, 1, 0, 0, 6, 9, 4, 5, 5, 7, 8, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n1) > g. The ratiosum for A is a(1)/a(0)  g + a(2)/a(1)  g + . . . , assuming that this series converges. For A = A293358, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.


LINKS

Table of n, a(n) for n=1..86.


EXAMPLE

ratiosum = 3.535917393515259350716802232248550673355...


MATHEMATICA

a[0] = 1; a[1] = 3; b[0] = 2; b[1 ] = 4;
a[n_] := a[n] = a[n  1] + a[n  2] + b[n  1];
j = 1; While[j < 13, k = a[j]  j  1;
While[k < a[j + 1]  j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A293358 *)
g = GoldenRatio; s = N[Sum[ g + a[n]/a[n  1], {n, 1, 1000}], 200]
Take[RealDigits[s, 10][[1]], 100] (* A296489 *)


CROSSREFS

Cf. A001622, A293358, A296284, A296490.
Sequence in context: A228446 A188889 A219604 * A253398 A151568 A134429
Adjacent sequences: A296486 A296487 A296488 * A296490 A296491 A296492


KEYWORD

nonn,easy,cons


AUTHOR

Clark Kimberling, Dec 19 2017


STATUS

approved



