login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295948
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
5
3, 4, 12, 22, 41, 71, 121, 202, 334, 549, 897, 1461, 2374, 3852, 6244, 10115, 16379, 26515, 42917, 69456, 112398, 181880, 294305, 476213, 770547, 1246790, 2017368, 3264190, 5281591, 8545815, 13827441, 22373292, 36200770, 58574100, 94774909, 153349049
OFFSET
0,1
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A295862 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
FORMULA
a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2) + f(n-2)*b(3) + ... + f(2)*b(n-1) + f(1)*b(n), where f(n) = A000045(n), the n-th Fibonacci number.
EXAMPLE
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, so that
b(3) = 6 (least "new number");
a(2) = a(1) + a(0) + b(2) = 12;
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
MATHEMATICA
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n];
j = 1; While[j < 16, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A295948 *)
Table[b[n], {n, 0, 20}] (* complement *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 08 2017
STATUS
approved