login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,1,0,1,1,0,1,3,2,0
Displaying 1-5 of 5 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A322114 Regular triangle read by rows where T(n,k) is the number of unlabeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1. +30
17
1, 1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 0, 3, 6, 3, 0, 0, 2, 11, 14, 6, 0, 0, 1, 13, 35, 33, 11, 0, 0, 0, 10, 61, 112, 81, 23, 0, 0, 0, 5, 75, 262, 347, 204, 47, 0, 0, 0, 2, 68, 463, 1059, 1085, 526, 106, 0, 0, 0, 1, 49, 625, 2458, 4091, 3348, 1376, 235 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
LINKS
EXAMPLE
Triangle begins:
1
1 1
0 1 1
0 1 3 2
0 0 3 6 3
0 0 2 11 14 6
0 0 1 13 35 33 11
Non-isomorphic representatives of the graphs counted in row 4:
{{2}{3}{12}{13}} {{4}{12}{23}{34}} {{13}{24}{35}{45}}
{{2}{3}{13}{23}} {{4}{13}{23}{34}} {{14}{25}{35}{45}}
{{3}{12}{13}{23}} {{4}{13}{24}{34}} {{15}{25}{35}{45}}
{{4}{14}{24}{34}}
{{12}{13}{24}{34}}
{{14}{23}{24}{34}}
PROG
(PARI)
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
{my(A=T(10)); for(n=1, #A, print(A[n, 1..n]))} \\ Andrew Howroyd, Oct 22 2019
CROSSREFS
Row sums are A191970. Last column is A000055.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 26 2018
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Oct 22 2019
STATUS
approved
A350448 Triangle read by rows: T(n,k) is the number of acyclic graphs on n unlabeled nodes whose longest directed path has k arcs. +30
2
1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 8, 14, 8, 0, 1, 20, 89, 128, 64, 0, 1, 55, 634, 1934, 2336, 1024, 0, 1, 163, 5668, 36428, 83648, 84992, 32768, 0, 1, 556, 67926, 959718, 3919584, 7097088, 6144000, 2097152, 0, 1, 2222, 1137641, 37205922, 268989920, 793138688, 1175224320, 880803840, 268435456, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
EXAMPLE
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 3, 2, 0;
1, 8, 14, 8, 0;
1, 20, 89, 128, 64, 0;
1, 55, 634, 1934, 2336, 1024, 0;
1, 163, 5668, 36428, 83648, 84992, 32768, 0;
...
PROG
(PARI) \\ See PARI link in A122078 for program code.
{ my(T=AcyclicDigraphsByLongestPath(8)); for(n=1, #T, print(T[n])) }
CROSSREFS
Row sums are A003087.
Diagonals include A000007, A006125.
Cf. A122078.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 31 2021
STATUS
approved
A355423 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} (exp(j*x) - 1)). +30
2
1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 6, 14, 5, 0, 1, 10, 50, 81, 15, 0, 1, 15, 130, 504, 551, 52, 0, 1, 21, 280, 2000, 5870, 4266, 203, 0, 1, 28, 532, 6075, 35054, 76872, 36803, 877, 0, 1, 36, 924, 15435, 148429, 684000, 1111646, 348543, 4140, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
FORMULA
T(0,k) = 1 and T(n,k) = Sum_{i=1..n} (Sum_{j=1..k} j^i) * binomial(n-1,i-1) * T(n-i,k) for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 3, 6, 10, 15, ...
0, 2, 14, 50, 130, 280, ...
0, 5, 81, 504, 2000, 6075, ...
0, 15, 551, 5870, 35054, 148429, ...
0, 52, 4266, 76872, 684000, 4004100, ...
CROSSREFS
Columns k=0-4 give: A000007, A000110, A355291, A355421, A355422.
Main diagonal gives A320288.
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 01 2022
STATUS
approved
A054654 Triangle of Stirling numbers of 1st kind, S(n, n-k), n >= 0, 0 <= k <= n. +20
12
1, 1, 0, 1, -1, 0, 1, -3, 2, 0, 1, -6, 11, -6, 0, 1, -10, 35, -50, 24, 0, 1, -15, 85, -225, 274, -120, 0, 1, -21, 175, -735, 1624, -1764, 720, 0, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Triangle is the matrix product of the binomial coefficients with the Stirling numbers of the first kind.
Triangle T(n,k) giving coefficients in expansion of n!*C(x,n) in powers of x. E.g., 3!*C(x,3) = x^3-3*x^2+2*x.
The matrix product of binomial coefficients with the Stirling numbers of the first kind results in the Stirling numbers of the first kind again, but the triangle is shifted by (1,1).
Essentially [1,0,1,0,1,0,1,0,...] DELTA [0,-1,-1,-2,-2,-3,-3,-4,-4,...] where DELTA is the operator defined in A084938; mirror image of the Stirling-1 triangle A048994. - Philippe Deléham, Dec 30 2006
From Doudou Kisabaka, Dec 18 2009: (Start)
The sum of the entries on each row of the triangle, starting on the 3rd row, equals 0. E.g., 1+(-3)+2+0 = 0.
The entries on the triangle can be computed as follows. T(n,r) = T(n-1,r) - (n-1)*T(n-1,r-1). T(n,r) = 0 when r equals 0 or r > n. T(n,r) = 1 if n==1. (End)
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol
Eric Weisstein's World of Mathematics, Rising Factorial
Eric Weisstein's World of Mathematics, FallingFactorial
FORMULA
n!*binomial(x, n) = Sum_{k=0..n} T(n, k)*x^(n-k).
(In Maple notation:) Matrix product A*B of matrix A[i,j]:=binomial(j-1,i-1) with i = 1 to p+1, j = 1 to p+1, p=8 and of matrix B[i,j]:=stirling1(j,i) with i from 1 to d, j from 1 to d, d=9.
T(n, k) = (-1)^k*Sum_{j=0..k} E2(k, j)*binomial(n+j-1, 2*k), where E2(k, j) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 21 2021
EXAMPLE
Matrix begins:
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, -1, 2, -6, 24, -120, 720, -5040, ...
0, 0, 1, -3, 11, -50, 274, -1764, 13068, ...
0, 0, 0, 1, -6, 35, -225, 1624, -13132, ...
0, 0, 0, 0, 1, -10, 85, -735, 6769, ...
0, 0, 0, 0, 0, 1, -15, 175, -1960, ...
0, 0, 0, 0, 0, 0, 1, -21, 322, ...
0, 0, 0, 0, 0, 0, 0, 1, -28, ...
0, 0, 0, 0, 0, 0, 0, 0, 1, ...
...
Triangle begins:
1;
1, 0;
1, -1, 0;
1, -3, 2, 0;
1, -6, 11, -6, 0;
1, -10, 35, -50, 24, 0;
1, -15, 85, -225, 274, -120, 0;
1, -21, 175, -735, 1624, -1764, 720, 0;
...
MAPLE
a054654_row := proc(n) local k; seq(coeff(expand((-1)^n*pochhammer (-x, n)), x, n-k), k=0..n) end: # Peter Luschny, Nov 28 2010
seq(seq(Stirling1(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021
MATHEMATICA
row[n_] := Reverse[ CoefficientList[ (-1)^n*Pochhammer[-x, n], x] ]; Flatten[ Table[ row[n], {n, 0, 8}]] (* Jean-François Alcover, Feb 16 2012, after Maple *)
Table[StirlingS1[n, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Jun 17 2023 *)
PROG
(PARI) T(n, k)=polcoeff(n!*binomial(x, n), n-k)
(Haskell)
a054654 n k = a054654_tabl !! n !! k
a054654_row n = a054654_tabl !! n
a054654_tabl = map reverse a048994_tabl
-- Reinhard Zumkeller, Mar 18 2014
CROSSREFS
Essentially Stirling numbers of first kind, multiplied by factorials - see A008276.
The Stirling2 counterpart is A106800.
KEYWORD
tabl,sign,easy,nice
AUTHOR
N. J. A. Sloane, Apr 18 2000
EXTENSIONS
Additional comments from Thomas Wieder, Dec 29 2006
Edited by N. J. A. Sloane at the suggestion of Eric W. Weisstein, Jan 20 2008
STATUS
approved
A322324 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Product_{p|n, p prime} (1 - p^k). +20
1
1, 1, 0, 1, -1, 0, 1, -3, -2, 0, 1, -7, -8, -1, 0, 1, -15, -26, -3, -4, 0, 1, -31, -80, -7, -24, 2, 0, 1, -63, -242, -15, -124, 24, -6, 0, 1, -127, -728, -31, -624, 182, -48, -1, 0, 1, -255, -2186, -63, -3124, 1200, -342, -3, -2, 0, 1, -511, -6560, -127, -15624, 7502, -2400, -7, -8, 4, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,8
LINKS
FORMULA
G.f. of column k: Sum_{j>=1} mu(j)*j^k*x^j/(1 - x^j).
Dirichlet g.f. of column k: zeta(s)/zeta(s-k).
A(n,k) = Sum_{d|n} mu(d)*d^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1, -3, -7, -15, -31, ...
0, -2, -8, -26, -80, -242, ...
0, -1, -3, -7, -15, -31, ...
0, -4, -24, -124, -624, -3124, ...
0, 2, 24, 182, 1200, 7502, ...
MATHEMATICA
Table[Function[k, Product[1 - Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[MoebiusMu[j] j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, Sum[MoebiusMu[d] d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
PROG
(PARI) T(n, k) = sumdiv(n, d, moebius(d)*d^k);
matrix(6, 6, n, k, T(n, k-1)) \\ Michel Marcus, Dec 03 2018
CROSSREFS
Columns k=0..5 give A063524, A023900, A046970, A063453, A189922, A189923.
Cf. A008683, A059379, A059380, A321222 (diagonal).
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Dec 03 2018
STATUS
approved
page 1

Search completed in 0.006 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 16:02 EDT 2024. Contains 374234 sequences. (Running on oeis4.)