login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,0,2,0,5,0,14,0,42,0
Displaying 1-5 of 5 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A126120 Catalan numbers (A000108) interpolated with 0's. +30
58
1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, 16796, 0, 58786, 0, 208012, 0, 742900, 0, 2674440, 0, 9694845, 0, 35357670, 0, 129644790, 0, 477638700, 0, 1767263190, 0, 6564120420, 0, 24466267020, 0, 91482563640, 0, 343059613650, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Inverse binomial transform of A001006.
The Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...].
Counts returning walks (excursions) of length n on a 1-d integer lattice with step set {+1,-1} which stay in the chamber x >= 0. - Andrew V. Sutherland, Feb 29 2008
Moment sequence of the trace of a random matrix in G=USp(2)=SU(2). If X=tr(A) is a random variable (A distributed according to the Haar measure on G) then a(n) = E[X^n]. - Andrew V. Sutherland, Feb 29 2008
Essentially the same as A097331. - R. J. Mathar, Jun 15 2008
Number of distinct proper binary trees with n nodes. - Chris R. Sims (chris.r.sims(AT)gmail.com), Jun 30 2010
-a(n-1), with a(-1):=0, n>=0, is the Z-sequence for the Riordan array A049310 (Chebyshev S). For the definition see that triangle. - Wolfdieter Lang, Nov 04 2011
See A180874 (also A238390 and A097610) and A263916 for relations to the general Bell A036040, cycle index A036039, and cumulant expansion polynomials A127671 through the Faber polynomials. - Tom Copeland, Jan 26 2016
A signed version is generated by evaluating polynomials in A126216 that are essentially the face polynomials of the associahedra. This entry's sequence is related to an inversion relation on p. 34 of Mizera, related to Feynman diagrams. - Tom Copeland, Dec 09 2019
REFERENCES
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Ch. 49, Hemisphere Publishing Corp., 1987.
LINKS
V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
Martin Aigner, Catalan and other numbers: a recurrent theme, in Algebraic Combinatorics and Computer Science, a Tribute to Gian-Carlo Rota, pp.347-390, Springer, 2001.
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
Radica Bojicic, Marko D. Petkovic and Paul Barry, Hankel transform of a sequence obtained by series reversion II-aerating transforms, arXiv:1112.1656 [math.CO], 2011.
Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv:1110.6638 [math.NT], 2011.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Kiran S. Kedlaya and Andrew V. Sutherland, HyperellipticCurves, L-Polynomials, and Random Matrices. In: Arithmetic, Geometry, Cryptography, and Coding Theory: International Conference, November 5-9, 2007, CIRM, Marseilles, France. (Contemporary Mathematics; v.487)
S. Mizera, Combinatorics and Topology of Kawai-Lewellen-Tye Relations, arXiv:1706.08527 [hep-th], 2017.
E. Rowland, Pattern avoidance in binary trees, J. Comb. Theory A 117 (6) (2010) 741-758, Sec. 3.1.
Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv:1305.2015 [math.CO], 2013.
Y. Wang and Z.-H. Zhang, Combinatorics of Generalized Motzkin Numbers, J. Int. Seq. 18 (2015) # 15.2.4.
FORMULA
a(2*n) = A000108(n), a(2*n+1) = 0.
a(n) = A053121(n,0).
(1/Pi) Integral_{0 .. Pi} (2*cos(x))^n *2*sin^2(x) dx. - Andrew V. Sutherland, Feb 29 2008
G.f.: (1 - sqrt(1 - 4*x^2)) / (2*x^2) = 1/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-...(continued fraction). - Philippe Deléham, Nov 24 2009
G.f. A(x) satisfies A(x) = 1 + x^2*A(x)^2. - Vladimir Kruchinin, Feb 18 2011
E.g.f.: I_1(2x)/x Where I_n(x) is the modified Bessel function. - Benjamin Phillabaum, Mar 07 2011
Apart from the first term the e.g.f. is given by x*HyperGeom([1/2],[3/2,2], x^2). - Benjamin Phillabaum, Mar 07 2011
a(n) = Integral_{x=-2..2} x^n*sqrt((2-x)*(2+x)))/(2*Pi). - Peter Luschny, Sep 11 2011
E.g.f.: E(0)/(1-x) where E(k) = 1-x/(1-x/(x-(k+1)*(k+2)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
G.f.: 3/2- sqrt(1-4*x^2)/2 = 1/x^2 + R(0)/x^2, where R(k) = 2*k-1 - x^2*(2*k-1)*(2*k+1)/R(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013 (warning: this is not the g.f. of this sequence, R. J. Mathar, Sep 23 2021)
G.f.: 1/Q(0), where Q(k) = 2*k+1 + x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 09 2014
a(n) = n!*[x^n]hypergeom([],[2],x^2). - Peter Luschny, Jan 31 2015
a(n) = 2^n*hypergeom([3/2,-n],[3],2). - Peter Luschny, Feb 03 2015
a(n) = ((-1)^n+1)*2^(2*floor(n/2)-1)*Gamma(floor(n/2)+1/2)/(sqrt(Pi)* Gamma(floor(n/2)+2)). - Ilya Gutkovskiy, Jul 23 2016
D-finite with recurrence (n+2)*a(n) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Mar 21 2021
From Peter Bala, Feb 03 2024: (Start)
a(n) = 2^n * Sum_{k = 0..n} (-2)^(-k)*binomial(n, k)*Catalan(k+1).
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^2 = 1/(1 - 2*x) * c(-x/(1 - 2*x))^2 = c(x^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
EXAMPLE
G.f. = 1 + x^2 + 2*x^4 + 5*x^6 + 14*x^8 + 42*x^10 + 132*x^12 + 429*x^14 + ...
From Gus Wiseman, Nov 14 2022: (Start)
The a(0) = 1 through a(8) = 14 ordered binary rooted trees with n + 1 nodes (ranked by A358375):
o . (oo) . ((oo)o) . (((oo)o)o) . ((((oo)o)o)o)
(o(oo)) ((o(oo))o) (((o(oo))o)o)
((oo)(oo)) (((oo)(oo))o)
(o((oo)o)) (((oo)o)(oo))
(o(o(oo))) ((o((oo)o))o)
((o(o(oo)))o)
((o(oo))(oo))
((oo)((oo)o))
((oo)(o(oo)))
(o(((oo)o)o))
(o((o(oo))o))
(o((oo)(oo)))
(o(o((oo)o)))
(o(o(o(oo))))
(End)
MAPLE
with(combstruct): grammar := { BB = Sequence(Prod(a, BB, b)), a = Atom, b = Atom }: seq(count([BB, grammar], size=n), n=0..47); # Zerinvary Lajos, Apr 25 2007
BB := {E=Prod(Z, Z), S=Union(Epsilon, Prod(S, S, E))}: ZL:=[S, BB, unlabeled]: seq(count(ZL, size=n), n=0..45); # Zerinvary Lajos, Apr 22 2007
BB := [T, {T=Prod(Z, Z, Z, F, F), F=Sequence(B), B=Prod(F, Z, Z)}, unlabeled]: seq(count(BB, size=n+1), n=0..45); # valid for n> 0. # Zerinvary Lajos, Apr 22 2007
seq(n!*coeff(series(hypergeom([], [2], x^2), x, n+2), x, n), n=0..45); # Peter Luschny, Jan 31 2015
# Using function CompInv from A357588.
CompInv(48, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 07 2022
MATHEMATICA
a[n_?EvenQ] := CatalanNumber[n/2]; a[n_] = 0; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Sep 10 2012 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ BesselI[ 1, 2 x] / x, {x, 0, n}]]; (* Michael Somos, Mar 19 2014 *)
bot[n_]:=If[n==1, {{}}, Join@@Table[Tuples[bot/@c], {c, Table[{k, n-k-1}, {k, n-1}]}]];
Table[Length[bot[n]], {n, 10}] (* Gus Wiseman, Nov 14 2022 *)
Riffle[CatalanNumber[Range[0, 50]], 0, {2, -1, 2}] (* Harvey P. Dale, May 28 2024 *)
PROG
(Sage)
def A126120_list(n) :
D = [0]*(n+2); D[1] = 1
b = True; h = 2; R = []
for i in range(2*n-1) :
if b :
for k in range(h, 0, -1) : D[k] -= D[k-1]
h += 1; R.append(abs(D[1]))
else :
for k in range(1, h, 1) : D[k] += D[k+1]
b = not b
return R
A126120_list(46) # Peter Luschny, Jun 03 2012
(Magma) &cat [[Catalan(n), 0]: n in [0..30]]; // Vincenzo Librandi, Jul 28 2016
(Python)
from math import comb
def A126120(n): return 0 if n&1 else comb(n, m:=n>>1)//(m+1) # Chai Wah Wu, Apr 22 2024
CROSSREFS
Cf. A126216.
The unordered version is A001190, ranked by A111299.
These trees (ordered binary rooted) are ranked by A358375.
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 06 2007
EXTENSIONS
An erroneous comment removed by Tom Copeland, Jul 23 2016
STATUS
approved
A097331 Expansion of 1 + 2x/(1 + sqrt(1 - 4x^2)). +30
13
1, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, 16796, 0, 58786, 0, 208012, 0, 742900, 0, 2674440, 0, 9694845, 0, 35357670, 0, 129644790, 0, 477638700, 0, 1767263190, 0, 6564120420, 0, 24466267020, 0, 91482563640, 0, 343059613650, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Binomial transform is A097332. Second binomial transform is A014318.
Essentially the same as A126120. - R. J. Mathar, Jun 15 2008
Hankel transform is A087960(n) = (-1)^binomial(n+1,2). - Paul Barry, Aug 10 2009
LINKS
Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, Motzkin paths with a restricted first return decomposition, Integers (2019) Vol. 19, A46.
FORMULA
a(n) = 0^n + Catalan((n-1)/2)(1-(-1)^n)/2.
Unsigned version of A090192, A105523. - Philippe Deléham, Sep 29 2006
From Paul Barry, Aug 10 2009: (Start)
G.f.: 1+xc(x^2), c(x) the g.f. of A000108;
G.f.: 1/(1-x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+... (continued fraction);
G.f.: 1+x/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-... (continued fraction). (End)
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+2*x) (continued fraction); more generally g.f. C(x/(1+2*x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
Conjecture: (n+1)*a(n) + n*a(n-1) + 4*(-n+2)*a(n-2) + 4*(-n+3)*a(n-3)=0. - R. J. Mathar, Dec 02 2012
Recurrence: (n+3)*a(n+2) = 4*n*a(n), a(0)=a(1)=1. For nonzero terms, a(n) ~ 2^(n+1)/((n+1)^(3/2)*sqrt(2*Pi)). - Fung Lam, Mar 17 2014
MAPLE
A097331_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w]:=a[w-1]-(-1)^w*add(a[j]*a[w-j-1], j=1..w-1) od; convert(a, list)end: A097331_list(48); # Peter Luschny, May 19 2011
MATHEMATICA
a[0] = 1; a[n_?OddQ] := CatalanNumber[(n-1)/2]; a[_] = 0; Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Jul 24 2013 *)
PROG
(Sage)
def A097331_list(n) :
D = [0]*(n+2); D[1] = 1
b = True; h = 1; R = []
for i in range(2*n-1) :
if b :
for k in range(h, 0, -1) : D[k] -= D[k-1]
h += 1; R.append(abs(D[1]))
else :
for k in range(1, h, 1) : D[k] += D[k+1]
b = not b
return R
A097331_list(49) # Peter Luschny, Jun 03 2012
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 05 2004
STATUS
approved
A090192 Carlitz-Riordan q-Catalan numbers (recurrence version) for q = -1. +20
39
1, 1, 0, -1, 0, 2, 0, -5, 0, 14, 0, -42, 0, 132, 0, -429, 0, 1430, 0, -4862, 0, 16796, 0, -58786, 0, 208012, 0, -742900, 0, 2674440, 0, -9694845, 0, 35357670, 0, -129644790, 0, 477638700, 0, -1767263190, 0, 6564120420, 0, -24466267020, 0, 91482563640, 0, -343059613650, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Hankel transform is (-1)^C(n+1,2). - Paul Barry, Feb 15 2008
LINKS
Fung Lam and Seiichi Manyama, Table of n, a(n) for n = 0..3338 (first 1002 terms from Fung Lam)
FORMULA
a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-1 and a(0)=1.
G.f.: 1+x*c(-x^2), where c(x) is the g.f. of A000108; a(n) = 0^n+C((n-1)/2)(-1)^((n-1)/2)(1-(-1)^n)/2, where C(n) = A000108(n). - Paul Barry, Feb 15 2008
G.f.: 1/(1-x/(1+x/(1-x/(1+x/(1-x/(1+x/(1-.... (continued fraction). - Paul Barry, Jan 15 2009
a(n) = 2 * a(n-1) - Sum_{k=1..n} a(k-1) * a(n-k) if n>0. - Michael Somos, Jul 23 2011
G.f.: (2*x-1+sqrt(1+4*x^2))/(2*x). - Philippe Deléham, Nov 07 2011
E.g.f.: x*hypergeom([1/2],[2,3/2],-x^2)=A(x)=x*(1-(x^2)/(Q(0)+(x^2)); Q(k)=2*(k^3)+9*(k^2)+(13-2*(x^2))*k-(x^2)+6+(x^2)*(k+1)*(k+2)*((2*k+3)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
G.f.: 2 + (G(0)-1)/(2*x) where G(k)=1 - 4*x/(1 + 1/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 08 2012
G.f.: 2 + (G(0) -1)/x, where G(k)= 1 - x/(1 + x/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
G.f.: 1 - 1/(2*x) + G(0)/(4*x), where G(k)= 1 + 1/(1 - 2*x^2*(2*k-1)/(2*x^2*(2*k-1) - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
G.f.: 1- x/(Q(0) + 2*x^2), where Q(k)= (4*x^2 - 1)*k - 2*x^2 - 1 + 2*x^2*(k+1)*(2*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
G.f.: 1+ x/Q(0), where Q(k) = 2*k+1 - x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 09 2014
D-finite with recurrence: (n+3)*a(n+2) = -4*n*a(n), a(0)=a(1)=1. For nonzero terms, a(n) ~ (-1)^((n+3)/2)/sqrt(2*Pi)*2^(n+1)/(n+1)^(3/2). - Fung Lam, Mar 17 2014
a(n) = hypergeom([-n+1,-n], [2], -1). - Peter Luschny, Sep 22 2014
G.f. A(x) satisfies A(x) = 1 / (1 - x * A(-x)). - Michael Somos, Dec 26 2016
From Peter Bala, May 13 2024: (Start)
a(n) = 2^n * Integral_{x = 0..1} LegendreP(n, x) dx.
a(n) = Sum_{k = 0..floor(n/2)} (-1)^k*binomial(n,k)*binomial(2*n-2*k,n)/(n-2*k+1).
a(n) = Sum_{k = 0..n} (-1)^k * 2^(n-k)*binomial(n,k)*binomial(n+k,k)/(k + 1).
a(n) = 2^n * hypergeom([n + 1, -n], [2], 1/2).
a(n) = 1/n * Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(n,k+1) for n >= 1.
a(n) = 2^(n-1) * Gamma(1/2)/(Gamma((2-n)/2)*Gamma((n+3)/2)). (End)
EXAMPLE
G.f. = 1 + x - x^3 + 2*x^5 - 5*x^7 + 14*x^9 - 42*x^11 + 132*x^13 - 429*x^15 + ...
MAPLE
A090192_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1]-add(a[j]*a[w-j-1], j=1..w-1) od;
convert(a, list) end: A090192_list(48); # Peter Luschny, May 19 2011
a := n -> hypergeom([-n+1, -n], [2], -1); seq(round(evalf(a(n), 69)), n=0..48); # Peter Luschny, Sep 22 2014
a:= proc(n) if n::even then 0 else (-1)^((n-1)/2)*binomial(n+1, (n+1)/2)/(2*n) fi end proc: a(0):= 1:
seq(a(n), n=0..100); # Robert Israel, Sep 22 2014
MATHEMATICA
CoefficientList[Series[(2 x - 1 + Sqrt[1 + 4*x^2])/(2 x), {x, 0, 50}],
x] (* G. C. Greubel, Dec 24 2016 *)
Table[Hypergeometric2F1[1 - n, -n, 2, -1], {n, 0, 48}] (* Michael De Vlieger, Dec 26 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = 2 * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 23 2011 */
(Sage)
def A090192_list(n) :
D = [0]*(n+2); D[1] = 1
b = True; h = 1; R = []
for i in range(2*n-1) :
if b :
for k in range(h, 0, -1) : D[k] -= D[k-1]
h += 1; R.append(D[1])
else :
for k in range(1, h, 1) : D[k] += D[k+1]
b = not b
return R
A090192_list(49) # Peter Luschny, Jun 03 2012
(Ruby)
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A090192(n)
A(-1, n)
end # Seiichi Manyama, Dec 24 2016
(PARI) Vec((2*x - 1 + sqrt(1+4*x^2))/(2*x) + O(x^50)) \\ G. C. Greubel, Dec 24 2016
CROSSREFS
Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), this sequence (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=1 of A290789.
KEYWORD
sign
AUTHOR
Philippe Deléham, Jan 22 2004
STATUS
approved
A105523 Expansion of 1-x*c(-x^2) where c(x) is the g.f. of A000108. +20
17
1, -1, 0, 1, 0, -2, 0, 5, 0, -14, 0, 42, 0, -132, 0, 429, 0, -1430, 0, 4862, 0, -16796, 0, 58786, 0, -208012, 0, 742900, 0, -2674440, 0, 9694845, 0, -35357670, 0, 129644790, 0, -477638700, 0, 1767263190, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Row sums of A105522. Row sums of inverse of A105438.
First column of number triangle A106180.
LINKS
R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 313.
R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
FORMULA
G.f.: (1 + 2*x - sqrt(1+4*x^2))/(2*x).
a(n) = 0^n + sin(Pi*(n-2)/2)(C((n-1)/2)(1-(-1)^n)/2).
G.f.: 1/(1+x/(1-x/(1+x/(1-x/(1+x/(1-x.... (continued fraction). - Paul Barry, Jan 15 2009
a(n) = Sum{k = 0..n} A090181(n,k)*(-1)^k. - Philippe Deléham, Feb 02 2009
a(n) = (1/n)*sum_{i = 0..n-1} (-2)^i*binomial(n, i)*binomial(2*n-i-2, n-1). - Vladimir Kruchinin, Dec 26 2010
With offset 1, a(n) = -2 * a(n-1) + Sum_{k=1..n-1} a(k) * a(n-k), for n>1. - Michael Somos, Jul 25 2011
D-finite with recurrence: (n+3)*a(n+2) = -4*n*a(n), a(0)=1, a(1)=-1. - Fung Lam, Mar 18 2014
For nonzero terms, a(n) ~ (-1)^((n+1)/2)/sqrt(2*Pi)*2^(n+1)/(n+1)^(3/2). - Fung Lam, Mar 17 2014
a(n) = -(sqrt(Pi)*2^(n-1))/(Gamma(1-n/2)*Gamma((n+3)/2)) for n odd. - Peter Luschny, Oct 31 2014
From Peter Bala, Apr 20 2024: (Start)
a(n) = Sum_{k = 0..n} (-2)^(n-k)*binomial(n + k, 2*k)*Catalan(k), where Catalan(k) = A000108(k).
a(n) = (-2)^n * hypergeom([-n, n+1], [2], 1/2).
O.g.f.: A(x) = 1/x * series reversion of x*(1 - x)/(1 - 2*x). Cf. A152681. (End)
EXAMPLE
G.f. = 1 - x + x^3 - 2*x^5 + 5*x^7 - 14*x^9 + 42*x^11 - 132*x^13 + 429*x^15 + ...
MAPLE
A105523_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w]:=-a[w-1]+(-1)^w*add(a[j]*a[w-j-1], j=1..w-1) od; convert(a, list)end: A105523_list(40); # Peter Luschny, May 19 2011
MATHEMATICA
a[n_?EvenQ] := 0; a[n_?OddQ] := 4^n*Gamma[n/2] / (Gamma[-n/2]*(n+1)!); a[0] = 1; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 14 2011, after Vladimir Kruchinin *)
CoefficientList[Series[(1 + 2 x - Sqrt[1 + 4 x^2])/(2 x), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 01 2014 *)
a[ n_] := SeriesCoefficient[ (1 + 2 x - Sqrt[ 1 + 4 x^2]) / (2 x), {x, 0, n}]; (* Michael Somos, Jun 17 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], a[n] = -2 a[n - 1] + Sum[ a[j] a[n - j - 1], {j, 0, n - 1}]]; (* Michael Somos, Jun 17 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = -2 * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
(Sage)
def A105523(n):
if is_even(n): return 0 if n>0 else 1
return -(sqrt(pi)*2^(n-1))/(gamma(1-n/2)*gamma((n+3)/2))
[A105523(n) for n in (0..29)] # Peter Luschny, Oct 31 2014
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 + 2*x - Sqrt(1+4*x^2))/(2*x))); // G. C. Greubel, Sep 16 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 11 2005
EXTENSIONS
Typo in definition corrected by Robert Israel, Oct 31 2014
STATUS
approved
A210628 Expansion of (-1 + 2*x + sqrt( 1 - 4*x^2)) / (2*x) in powers of x. +20
2
1, -1, 0, -1, 0, -2, 0, -5, 0, -14, 0, -42, 0, -132, 0, -429, 0, -1430, 0, -4862, 0, -16796, 0, -58786, 0, -208012, 0, -742900, 0, -2674440, 0, -9694845, 0, -35357670, 0, -129644790, 0, -477638700, 0, -1767263190, 0, -6564120420, 0, -24466267020, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Except for the leading term, the sequence is equal to -A097331(n). - Fung Lam, Mar 22 2014
LINKS
FORMULA
G.f.: 1 - (2*x) / (1 + sqrt( 1 - 4*x^2)) = 1 - (1 - sqrt( 1 - 4*x^2)) / (2*x).
G.f. A(x) satisfies 0 = f(x, A(x)) where f(x, y) = x*y^2 - (1 - 2*x) * (1 - y).
G.f. A(x) satisfies A( x / (1 + x^2) ) = 1 - x.
G.f. A(x) = 1 - x - x * (1 - A(x))^2 = 1 - 1/x + 1 / (1 - A(x)).
G.f. A(x) = 1 / (1 + x / (1 - 2*x + x * A(x))).
G.f. A(x) = 1 / (1 + x / (1 - x / (1 - x / (1 + x * A(x))))).
G.f. A(x) = 1 / (1 + x * A001405(x)). A126930(x) = 1 / (1 + x * A(x)).
G.f. A(x) = 1 - x / (1 - x^2 / (1 - x^2 / (1 - x^2 / ...))). - Michael Somos, Jan 02 2013
a(2*n) = 0 unless n=0, a(2*n + 1) = -A000108(n). a(n) = (-1)^n * A097331(n). a(n-1) = (-1)^floor(n/2) * A090192(n).
Convolution inverse of A210736. - Michael Somos, Jan 02 2013
G.f.: 2/( G(0) + 1), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1+2*x) - 2*x*(1+2*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1+2*x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
D-finite with recurrence: (n+3)*a(n+2) = 4*n*a(n), a(0)=1, a(1)=-1. - Fung Lam, Mar 17 2014
For nonzero odd-power terms, a(n) = -2^(n+1)/(n+1)^(3/2)/sqrt(2*Pi)*(1+3/(4*n) + O(1/n^2)). (with contribution of Vaclav Kotesovec) - Fung Lam, Mar 17 2014
EXAMPLE
G.f. = 1 - x - x^3 - 2*x^5 - 5*x^7 - 14*x^9 - 42*x^11 - 132*x^13 - 429*x^15 + ...
MATHEMATICA
CoefficientList[Series[1 - 2 x/(1 + Sqrt[1 - 4 x^2]), {x, 0, 45}], x] (* Bruno Berselli, Mar 25 2012 *)
a[ n_] := SeriesCoefficient[ (-1 + 2 x + Sqrt[1 - 4 x^2]) / (2 x), {x, 0, n}];
PROG
(PARI) {a(n) = polcoeff( (-1 + 2*x + sqrt( 1 - 4*x^2 + x^2 * O(x^n))) / (2*x), n)};
(PARI) {a(n) = if( n<1, n==0, polcoeff( serreverse( -x / (1 + x^2) + x * O(x^n)), n))};
(PARI) {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = 1 - x - x * (1 - A)^2); polcoeff( A, n))};
(Maxima) makelist(coeff(taylor(1-2*x/(1+sqrt(1-4*x^2)), x, 0, n), x, n), n, 0, 45); \\ Bruno Berselli, Mar 25 2012
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((-1 + 2*x + Sqrt(1-4*x^2))/(2*x))); // G. C. Greubel, Aug 11 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 25 2012
STATUS
approved
page 1

Search completed in 0.013 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 15:46 EDT 2024. Contains 375017 sequences. (Running on oeis4.)