login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105438
Triangle, row sums = (Fibonacci numbers - 2).
4
1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 6, 5, 2, 1, 6, 9, 8, 6, 2, 1, 7, 12, 14, 10, 7, 2, 1, 8, 16, 20, 20, 12, 8, 2, 1, 9, 20, 30, 30, 27, 14, 9, 2, 1, 10, 25, 40, 50, 42, 35, 16, 10, 2, 1, 11, 30, 55, 70, 77, 56, 44, 18, 11, 2, 1
OFFSET
0,2
COMMENTS
Row sums = 1, 3, 6, 11, 19, 32, 53...(Fibonacci numbers - 2; starting with F(4)) The first few rows of the triangle are:
Row sums = (Fibonacci numbers - 2; starting 1, 3, 6...).
Column 1 = A002620; Column 2 = A006918; Column 3 = A096338.
Inverse array is A105522. - Paul Barry, Apr 11 2005
Diagonal sums are A027383(n). - Philippe Deléham, Jan 16 2014
LINKS
T. Mansour and A. O. Munagi, Alternating subsets modulo m, Rocky Mt. J. Math. 42, No. 4, 1313-1325 (2012), eq. (2)
FORMULA
By columns (k = 0, 1, 2...); use partial sum operator on (bin(n, k) numbers repeated).
T(n,k) = Sum_{j=0..n-k} C((j+2k)/2, k)*(1+(-1)^j)+C((j-1+2k)/2, k)*(1-(-1)^j)/2; Riordan array (1/(1-x)^2, x/(1-x^2)). - Paul Barry, Apr 11 2005
T(n,k) = T(n-1,k)+T(n-1,k-1)+T(n-2,k)-T(n-2,k-1)-T(n-3,k), T(0,0)=1, T(1,0)=2, T(1,1)= 1, T(n,k)= 0 if k<0 or if k>n. - Philippe Deléham, Jan 16 2014
EXAMPLE
Column 2: 1, 2, 5, 8, 14, 20, 30...is generated by using the partial sum operator on 1, 1, 3, 3, 6, 6, 10, 10...
The first few rows of the triangle are:
1;
2, 1;
3, 2, 1;
4, 4, 2, 1;
5, 6, 5, 2, 1;
6, 9, 8, 6, 2, 1;
7, 12, 14, 10, 7, 2, 1;
8, 16, 20, 20, 12, 8, 2, 1;
9, 20, 30, 30, 27, 14, 9, 2, 1;
10, 25, 40, 50, 42, 35, 16, 10, 2, 1;
...
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Apr 09 2005
STATUS
approved