login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014318
Convolution of Catalan numbers and powers of 2.
11
1, 3, 8, 21, 56, 154, 440, 1309, 4048, 12958, 42712, 144210, 496432, 1735764, 6145968, 21986781, 79331232, 288307254, 1054253208, 3875769606, 14315659632, 53097586284, 197677736208, 738415086066
OFFSET
0,2
COMMENTS
Binomial transform of A097332: (1, 2, 3, 5, 9, 18, 39, ...). - Gary W. Adamson, Aug 01 2011
Hankel transform is A087960. - Wathek Chammam, Dec 02 2011
LINKS
W. Chammam, F. Marcellán and R. Sfaxi, Orthogonal polynomials, Catalan numbers, and a general Hankel determinant evaluation, Linear Algebra and its Applications, Volume 436, Issue 7, 1 April 2012, Pages 2105-2116.
FORMULA
From Emeric Deutsch, Oct 16 2008: (Start)
G.f.: (1-sqrt(1-4*z))/(2*z*(1-2*z)).
a(n) = Sum_{j=0..n} (2^(n-j) * binomial(2*j,j)/(j+1)). (End)
a(n) = Sum_{j=0..n} abs(A106270(n, j)) * A000079(j). - Gary W. Adamson, Apr 02 2009
Recurrence: (n+1)*a(n) = 32*(2*n-7)*a(n-5) + 48*(8-3*n)*a(n-4) + 8*(16*n-29)*a(n-3) + 4*(13-14*n)*a(n-2) + 12*n*a(n-1), n>=5. - Fung Lam, Mar 09 2014
Asymptotics: a(n) ~ 2^(2n+1)/n^(3/2)/sqrt(Pi). - Fung Lam, Mar 21 2014
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x) * A(x)^2. - Ilya Gutkovskiy, Nov 21 2021
MAPLE
a:=proc(n) options operator, arrow: sum(2^(n-j)*binomial(2*j, j)/(j+1), j=0..n) end proc: seq(a(n), n=0..23); # Emeric Deutsch, Oct 16 2008
MATHEMATICA
a[n_]:= a[n]= Sum[2^(n-j)*CatalanNumber[j], {j, 0, n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jan 09 2023 *)
PROG
(Magma)
A014318:= func< n | (&+[2^(n-j)*Catalan(j): j in [0..n]]) >;
[A014318(n): n in [0..40]]; // G. C. Greubel, Jan 09 2023
(SageMath)
def A014318(n): return sum(2^(n-j)*catalan_number(j) for j in range(n+1))
[A014318(n) for n in range(41)] # G. C. Greubel, Jan 09 2023
CROSSREFS
KEYWORD
nonn
STATUS
approved