OFFSET
0,3
COMMENTS
Hankel transform is A158496.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = (2*0^n - 2^n + A126966(n))/2.
Conjecture: n*a(n) +6*(-n+1)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Dec 03 2014
From G. C. Greubel, Jan 09 2023: (Start)
a(n) = [n=0] - Sum_{k=1..n} 2^(n-k)*A000108(k-1).
a(n) = Sum_{j=0..n} 2^(n-j)*A246432(j). (End)
MATHEMATICA
CoefficientList[Series[((1-4x)+Sqrt[1-4x])/(2(1-2x)), {x, 0, 30}], x] (* Harvey P. Dale, Dec 15 2011 *)
PROG
(Magma)
A158495:= func< n | n eq 0 select 1 else - (&+[2^(n-j)*Catalan(j-1): j in [1..n]]) >;
[A158495(n): n in [0..40]]; // G. C. Greubel, Jan 09 2023
(SageMath)
def A158495(n): return int(n==0) - sum(2^(n-k)*catalan_number(k-1) for k in range(1, n+1))
[A158495(n) for n in range(41)] # G. C. Greubel, Jan 09 2023
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 20 2009
STATUS
approved