login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158495
Expansion of ((1-4*x) + sqrt(1-4*x))/(2*(1-2*x)).
3
1, -1, -3, -8, -21, -56, -154, -440, -1309, -4048, -12958, -42712, -144210, -496432, -1735764, -6145968, -21986781, -79331232, -288307254, -1054253208, -3875769606, -14315659632, -53097586284, -197677736208, -738415086066
OFFSET
0,3
COMMENTS
Hankel transform is A158496.
LINKS
FORMULA
a(n) = (2*0^n - 2^n + A126966(n))/2.
Conjecture: n*a(n) +6*(-n+1)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Dec 03 2014
From G. C. Greubel, Jan 09 2023: (Start)
a(n) = [n=0] - Sum_{k=1..n} 2^(n-k)*A000108(k-1).
a(n) = Sum_{j=0..n} 2^(n-j)*A246432(j). (End)
MATHEMATICA
CoefficientList[Series[((1-4x)+Sqrt[1-4x])/(2(1-2x)), {x, 0, 30}], x] (* Harvey P. Dale, Dec 15 2011 *)
PROG
(Magma)
A158495:= func< n | n eq 0 select 1 else - (&+[2^(n-j)*Catalan(j-1): j in [1..n]]) >;
[A158495(n): n in [0..40]]; // G. C. Greubel, Jan 09 2023
(SageMath)
def A158495(n): return int(n==0) - sum(2^(n-k)*catalan_number(k-1) for k in range(1, n+1))
[A158495(n) for n in range(41)] # G. C. Greubel, Jan 09 2023
CROSSREFS
Essentially the same as A014318, up to sign and offset.
Sequence in context: A008909 A006835 A014318 * A349186 A273720 A018037
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 20 2009
STATUS
approved