Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jan 10 2023 07:59:58
%S 1,-1,-3,-8,-21,-56,-154,-440,-1309,-4048,-12958,-42712,-144210,
%T -496432,-1735764,-6145968,-21986781,-79331232,-288307254,-1054253208,
%U -3875769606,-14315659632,-53097586284,-197677736208,-738415086066
%N Expansion of ((1-4*x) + sqrt(1-4*x))/(2*(1-2*x)).
%C Hankel transform is A158496.
%H G. C. Greubel, <a href="/A158495/b158495.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = (2*0^n - 2^n + A126966(n))/2.
%F Conjecture: n*a(n) +6*(-n+1)*a(n-1) +4*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Dec 03 2014
%F From _G. C. Greubel_, Jan 09 2023: (Start)
%F a(n) = [n=0] - Sum_{k=1..n} 2^(n-k)*A000108(k-1).
%F a(n) = Sum_{j=0..n} 2^(n-j)*A246432(j). (End)
%t CoefficientList[Series[((1-4x)+Sqrt[1-4x])/(2(1-2x)),{x,0,30}],x] (* _Harvey P. Dale_, Dec 15 2011 *)
%o (Magma)
%o A158495:= func< n | n eq 0 select 1 else - (&+[2^(n-j)*Catalan(j-1): j in [1..n]]) >;
%o [A158495(n): n in [0..40]]; // _G. C. Greubel_, Jan 09 2023
%o (SageMath)
%o def A158495(n): return int(n==0) - sum(2^(n-k)*catalan_number(k-1) for k in range(1,n+1))
%o [A158495(n) for n in range(41)] # _G. C. Greubel_, Jan 09 2023
%Y Essentially the same as A014318, up to sign and offset.
%Y Cf. A126966, A158496, A246432.
%K easy,sign
%O 0,3
%A _Paul Barry_, Mar 20 2009