OFFSET
0,5
COMMENTS
Consider the k-fold Cartesian products CP(n,k) of the vector A(n)=[1,2,3,...,n].
An element of CP(n,k) is a n-tuple T_t of the form T_t=[i_1,i_2,i_3,...,i_k] with t=1,..,n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
FORMULA
EXAMPLE
The triangle begins
1
1 1
1 2 2
1 3 6 12
1 4 12 36 108
1 5 20 80 320 1280
1 6 30 150 750 3750 18750
1 7 42 252 1512 9072 54432 326592
1 8 56 392 2744 19208 134456 941192 6588344
T(3,3)=12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3=27 triples in the CP(3,3).
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Thomas Wieder, Mar 20 2009
EXTENSIONS
Edited by R. J. Mathar, Mar 31 2009
STATUS
approved