The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees. 1
 1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Consider the k-fold Cartesian products CP(n,k) of the vector A(n)=[1,2,3,...,n]. An element of CP(n,k) is a n-tuple T_t of the form T_t=[i_1,i_2,i_3,...,i_k] with t=1,..,n^k. We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count. For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)). The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1). Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108. LINKS FORMULA Columns: T(n,2)=A002378(n-1). T(n,3)=A011379(n-1). T(n,5)=A101362(n-1). Rows: T(2,k) = A040000(k). T(3,k) = A003945(k), T(4,k)=A003946(k), T(5,k)=A003947(k), T(6,k)=A003948(k). T(n,k) = (n-1)^(k-1)+(n-1)^k = n*A079901(n-1,k-1), k>0. sum_{k=0..n} T(n,k) = (n*(n-1)^n-2)/(n-2), n>2. EXAMPLE The triangle begins 1 1 1 1 2 2 1 3 6 12 1 4 12 36 108 1 5 20 80 320 1280 1 6 30 150 750 3750 18750 1 7 42 252 1512 9072 54432 326592 1 8 56 392 2744 19208 134456 941192 6588344 T(3,3)=12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3=27 triples in the CP(3,3). CROSSREFS Cf. A007318, A158498. Sequence in context: A239572 A056043 A187005 * A334894 A110564 A210791 Adjacent sequences:  A158494 A158495 A158496 * A158498 A158499 A158500 KEYWORD nonn,tabl AUTHOR Thomas Wieder, Mar 20 2009 EXTENSIONS Edited by R. J. Mathar, Mar 31 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 08:08 EDT 2020. Contains 336480 sequences. (Running on oeis4.)