login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101362 a(n) = (n+1)*n^4. 2
0, 2, 48, 324, 1280, 3750, 9072, 19208, 36864, 65610, 110000, 175692, 269568, 399854, 576240, 810000, 1114112, 1503378, 1994544, 2606420, 3360000, 4278582, 5387888, 6716184, 8294400, 10156250, 12338352, 14880348, 17825024, 21218430, 25110000, 29552672 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n>=4, a(n-1) is equal to the number of functions f:{1,2,3,4,5}->{1,2,...,n} such that for fixed, different x_1, x_2, x_3, x_4 in {1,2,3,4,5} and fixed y_1, y_2, y_3, y_ 4 in {1,2,...n} we have f(x_i)<>y_i, (i=1,2,3,4). - Milan Janjic, May 13 2007

Pierce expansion of the constant 1 - Sum_{k >= 1} (-1)^(k+1)*k^4/k!^5 = 0.48961 54584 28443 62043 ... = 1/2 - 1/(2*48) + 1/(2*48*324) - .... - Peter Bala, Feb 01 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets

Katherine Kanim, Proof without Words: The Sum of Cubes: An Extension of Archimedes' Sum of Squares, Mathematics Magazine, Vol. 77, No. 4 (2004), pp. 298-299.

Eric Weisstein's World of Mathematics, Pierce Expansion.

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

a(n) + 6*Sum_{i=1..n} i^3 + 4*Sum_{i=1..n} i^2 + Sum_{i=1..n} i = 5*Sum_{i=1..n} i^4.

G.f.: 2*x*(8*x^3+33*x^2+18*x+1) / (x-1)^6. - Colin Barker, May 06 2013

Sum_{n>=1} 1/a(n) = 0.5252003... = Pi^2/6+Pi^4/90-Zeta(3)-1. - R. J. Mathar, Oct 18 2019

Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2*log(2) + Pi^2/12 - 3*zeta(3)/4 + 7*Pi^4/720. - Amiram Eldar, Nov 05 2020

EXAMPLE

a(5) = (5+1)*5^4 = 3750 = 2 * 3 * 5^4, the sum of the divisors of which is 30008.

a(7) = 8*7^4 = 19208 = 2^3 * 7^4 = 98^2 + 98^2.

a(8) = 9*8^4 = 36864 = 2^12*3^2 = 192^2.

a(9) = 10*9^4 = 65610 = 2*3^8*5 = 243^2 + 81^2.

a(10) = 11*10^4 = 110000 = 2^4*5^4*11 = 300^2 + 100^2 + 100^2.

MAPLE

a:= n-> (n+1)*n^4: seq(a(n), n=0..35);

MATHEMATICA

Table[(n + 1)*n^4, {n, 0, 30}]

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 2, 48, 324, 1280, 3750}, 40] (* Harvey P. Dale, Jun 10 2019 *)

PROG

(Magma) [n^4+n^5: n in [0..40]]; // Vincenzo Librandi, Aug 15 2016

CROSSREFS

Cf. A019583.

Sequence in context: A226396 A341110 A075690 * A215186 A058090 A051252

Adjacent sequences: A101359 A101360 A101361 * A101363 A101364 A101365

KEYWORD

nonn,easy

AUTHOR

Jonathan Vos Post, Dec 25 2004

EXTENSIONS

Corrected and extended by Ray Chandler, Dec 26 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 01:31 EST 2022. Contains 358431 sequences. (Running on oeis4.)