The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101362 a(n) = (n+1)*n^4. 2
 0, 2, 48, 324, 1280, 3750, 9072, 19208, 36864, 65610, 110000, 175692, 269568, 399854, 576240, 810000, 1114112, 1503378, 1994544, 2606420, 3360000, 4278582, 5387888, 6716184, 8294400, 10156250, 12338352, 14880348, 17825024, 21218430, 25110000, 29552672 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n>=4, a(n-1) is equal to the number of functions f:{1,2,3,4,5}->{1,2,...,n} such that for fixed, different x_1, x_2, x_3, x_4 in {1,2,3,4,5} and fixed y_1, y_2, y_3, y_ 4 in {1,2,...n} we have f(x_i)<>y_i, (i=1,2,3,4). - Milan Janjic, May 13 2007 Pierce expansion of the constant 1 - Sum_{k >= 1} (-1)^(k+1)*k^4/k!^5 = 0.48961 54584 28443 62043 ... = 1/2 - 1/(2*48) + 1/(2*48*324) - .... - Peter Bala, Feb 01 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Katherine Kanim, Proof without Words: The Sum of Cubes: An Extension of Archimedes' Sum of Squares, Mathematics Magazine, Vol. 77, No. 4 (2004), pp. 298-299. Eric Weisstein's World of Mathematics, Pierce Expansion. Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA a(n) + 6*Sum_{i=1..n} i^3 + 4*Sum_{i=1..n} i^2 + Sum_{i=1..n} i = 5*Sum_{i=1..n} i^4. G.f.: 2*x*(8*x^3+33*x^2+18*x+1) / (x-1)^6. - Colin Barker, May 06 2013 Sum_{n>=1} 1/a(n) = 0.5252003... = Pi^2/6+Pi^4/90-Zeta(3)-1. - R. J. Mathar, Oct 18 2019 Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2*log(2) + Pi^2/12 - 3*zeta(3)/4 + 7*Pi^4/720. - Amiram Eldar, Nov 05 2020 EXAMPLE a(5) = (5+1)*5^4 = 3750 = 2 * 3 * 5^4, the sum of the divisors of which is 30008. a(7) = 8*7^4 = 19208 = 2^3 * 7^4 = 98^2 + 98^2. a(8) = 9*8^4 = 36864 = 2^12*3^2 = 192^2. a(9) = 10*9^4 = 65610 = 2*3^8*5 = 243^2 + 81^2. a(10) = 11*10^4 = 110000 = 2^4*5^4*11 = 300^2 + 100^2 + 100^2. MAPLE a:= n-> (n+1)*n^4: seq(a(n), n=0..35); MATHEMATICA Table[(n + 1)*n^4, {n, 0, 30}] LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 2, 48, 324, 1280, 3750}, 40] (* Harvey P. Dale, Jun 10 2019 *) PROG (Magma) [n^4+n^5: n in [0..40]]; // Vincenzo Librandi, Aug 15 2016 CROSSREFS Cf. A019583. Sequence in context: A226396 A341110 A075690 * A215186 A058090 A051252 Adjacent sequences: A101359 A101360 A101361 * A101363 A101364 A101365 KEYWORD nonn,easy AUTHOR Jonathan Vos Post, Dec 25 2004 EXTENSIONS Corrected and extended by Ray Chandler, Dec 26 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 01:31 EST 2022. Contains 358431 sequences. (Running on oeis4.)