The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158498 a(n) = (1/2)*(n^3 - 6*n^2 + 13*n - 6). 5
 1, 2, 3, 7, 17, 36, 67, 113, 177, 262, 371, 507, 673, 872, 1107, 1381, 1697, 2058, 2467, 2927, 3441, 4012, 4643, 5337, 6097, 6926, 7827, 8803, 9857, 10992, 12211, 13517, 14913, 16402, 17987, 19671, 21457, 23348, 25347, 27457, 29681 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = (1/2)*(n^3 - 6*n^2 + 13*n - 6). G.f.: x*(1 - 2*x + x^2 + 3*x^3) / (1-x)^4. a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - G. C. Greubel, Feb 19 2017 MATHEMATICA Table[(1/2)*(n^3 - 6*n^2 + 13*n - 6), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 3, 7}, 50] (* G. C. Greubel, Feb 19 2017 *) PROG (PARI) x='x+O('x^50); Vec(x*(1 - 2*x + x^2 + 3*x^3) / (1-x)^4) \\ G. C. Greubel, Feb 19 2017 (PARI) a(n)=(n^3 - 6*n^2 + 13*n - 6)/2 \\ Charles R Greathouse IV, Feb 19 2017 CROSSREFS Sequence in context: A030086 A078721 A077007 * A267601 A155548 A191033 Adjacent sequences: A158495 A158496 A158497 * A158499 A158500 A158501 KEYWORD nonn,easy AUTHOR Alexander R. Povolotsky, Jan 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 11:55 EDT 2024. Contains 372712 sequences. (Running on oeis4.)