The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158498 a(n) = (1/2)*(n^3 - 6*n^2 + 13*n - 6). 5
1, 2, 3, 7, 17, 36, 67, 113, 177, 262, 371, 507, 673, 872, 1107, 1381, 1697, 2058, 2467, 2927, 3441, 4012, 4643, 5337, 6097, 6926, 7827, 8803, 9857, 10992, 12211, 13517, 14913, 16402, 17987, 19671, 21457, 23348, 25347, 27457, 29681 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(n^3 - 6*n^2 + 13*n - 6).
G.f.: x*(1 - 2*x + x^2 + 3*x^3) / (1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - G. C. Greubel, Feb 19 2017
MATHEMATICA
Table[(1/2)*(n^3 - 6*n^2 + 13*n - 6), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 3, 7}, 50] (* G. C. Greubel, Feb 19 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(x*(1 - 2*x + x^2 + 3*x^3) / (1-x)^4) \\ G. C. Greubel, Feb 19 2017
(PARI) a(n)=(n^3 - 6*n^2 + 13*n - 6)/2 \\ Charles R Greathouse IV, Feb 19 2017
CROSSREFS
Sequence in context: A030086 A078721 A077007 * A267601 A155548 A191033
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 11:55 EDT 2024. Contains 372712 sequences. (Running on oeis4.)