The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078721 a(n) = prime(n*(n+1)/2 + 1). 11
2, 3, 7, 17, 31, 53, 79, 109, 157, 199, 263, 331, 401, 479, 577, 661, 773, 887, 1021, 1153, 1297, 1459, 1609, 1787, 1993, 2161, 2377, 2609, 2797, 3041, 3313, 3547, 3803, 4079, 4363, 4663, 4987, 5309, 5647, 5953, 6311, 6689, 7027, 7481, 7841, 8263, 8689 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Primes on the left side of the triangle formed by listing successively the prime numbers in a triangular grid:
2
3 5
7 11 13
17 19 23 29
31 37 41 43 47
53 59 61 67 71 73
The sum of the reciprocals appears to converge.
As the terms grow faster than the triangular numbers and the sum of inverse numbers converges, the sum of inverses indeed converges. - Joerg Arndt, Oct 28 2015
LINKS
FORMULA
a(n) = A000040(A000124(n)). - Altug Alkan, Oct 28 2015
MATHEMATICA
Table[Prime[n (n + 1)/2 + 1], {n, 0, 46}] (* Michael De Vlieger, Oct 28 2015 *)
Prime[#]&/@(Accumulate[Range[0, 50]]+1) (* Harvey P. Dale, Aug 04 2018 *)
PROG
(PARI) triprimes(n) = { sr = 0; for(j=0, n, x = j*(j+1)/2+1; z = prime(x); sr+=1.0/z; print1(z, ", "); ); print(); /* print(sr); */}
(Magma) [NthPrime(n*(n + 1) div 2+1): n in [0..50]]; // Vincenzo Librandi, Jun 08 2016
CROSSREFS
Sequence in context: A083822 A349665 A030086 * A077007 A158498 A267601
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Dec 20 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 18:29 EDT 2024. Contains 372919 sequences. (Running on oeis4.)