login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158501 Hankel transform of A158500. 2
1, 0, 25, -24, 105, -104, 273, -272, 561, -560, 1001, -1000, 1625, -1624, 2465, -2464, 3553, -3552, 4921, -4920, 6601, -6600, 8625, -8624, 11025, -11024, 13833, -13832, 17081, -17080, 20801, -20800, 25025, -25024, 29785, -29784, 35113, -35112, 41041, -41040 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-1,3,3,-3,-3,1,1).

FORMULA

G.f.: (1+x+22*x^2-2*x^3+9*x^4+x^5) / ((1-x)^3*(1+x)^4).

a(n) = -a(n-1)+3*a(n-2)+3*a(n-3)-3*a(n-4)-3*a(n-5)+a(n-6)+a(n-7).

From Colin Barker, Jan 29 2016: (Start)

a(n) = (n+1)*(2*(-1)^n*n^2+4*(-1)^n*n+3*n+3)/3.

a(n) = (2*n^3+9*n^2+10*n+3)/3 for n even.

a(n) = (-2*n^3-3*n^2+2*n+3)/3 for n odd.

(End)

MATHEMATICA

LinearRecurrence[{-1, 3, 3, -3, -3, 1, 1}, {1, 0, 25, -24, 105, -104, 273}, 40] (* Harvey P. Dale, Aug 19 2012 *)

PROG

(PARI) Vec((1+x+22*x^2-2*x^3+9*x^4+x^5)/((1-x)^3*(1+x)^4) + O(x^50)) \\ Colin Barker, Jan 29 2016

CROSSREFS

Sequence in context: A061438 A022981 A023467 * A330272 A194219 A291434

Adjacent sequences:  A158498 A158499 A158500 * A158502 A158503 A158504

KEYWORD

easy,sign

AUTHOR

Paul Barry, Mar 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 02:45 EST 2020. Contains 338756 sequences. (Running on oeis4.)