The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158501 Hankel transform of A158500. 2
1, 0, 25, -24, 105, -104, 273, -272, 561, -560, 1001, -1000, 1625, -1624, 2465, -2464, 3553, -3552, 4921, -4920, 6601, -6600, 8625, -8624, 11025, -11024, 13833, -13832, 17081, -17080, 20801, -20800, 25025, -25024, 29785, -29784, 35113, -35112, 41041, -41040 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f.: (1+x+22*x^2-2*x^3+9*x^4+x^5) / ((1-x)^3*(1+x)^4).
a(n) = -a(n-1)+3*a(n-2)+3*a(n-3)-3*a(n-4)-3*a(n-5)+a(n-6)+a(n-7).
From Colin Barker, Jan 29 2016: (Start)
a(n) = (n+1)*(2*(-1)^n*n^2+4*(-1)^n*n+3*n+3)/3.
a(n) = (2*n^3+9*n^2+10*n+3)/3 for n even.
a(n) = (-2*n^3-3*n^2+2*n+3)/3 for n odd.
(End)
MATHEMATICA
LinearRecurrence[{-1, 3, 3, -3, -3, 1, 1}, {1, 0, 25, -24, 105, -104, 273}, 40] (* Harvey P. Dale, Aug 19 2012 *)
PROG
(PARI) Vec((1+x+22*x^2-2*x^3+9*x^4+x^5)/((1-x)^3*(1+x)^4) + O(x^50)) \\ Colin Barker, Jan 29 2016
CROSSREFS
Sequence in context: A061438 A022981 A023467 * A330272 A194219 A291434
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 20 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 19:52 EDT 2024. Contains 373432 sequences. (Running on oeis4.)