login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158503 Triangle read by rows: numerators of coefficients of the polynomials phi_s(t) used for asymptotic elementary function expansions of parabolic cylinder functions U(a, x), V(a, x). 1
1, -9, -30, -20, 945, 8028, 19404, 18480, 6160, -1403325, -20545650, -94064328, -200166120, -220540320, -122522400, -27227200, 820945125, 17610977880, 124110533448, 431932849920, 857710030320, 1023307084800, 728175127680, 285558873600, 47593145600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Each polynomial phi_s(t) has 2s+1 terms. The signs of the polynomials alternate with s with positive coefficients for s even and negative coefficients for s odd.

REFERENCES

Amparo Gil, Javier Segura and Nico M. Temme, ACM TOMS, Volume 32, Issue 1 (March 2006), pages 70-101.

Amparo Gil, Javier Segura and Nico M. Temme, Numerical Methods for Special Functions, SIAM, 2007, pages 378-385. See Equations 12.121 through 12.125

LINKS

Chris Kormanyos, Rows s = 0..122, flattened

FORMULA

phi_s+1(t) = ( -4t^2(t + 1)^2 * d/dt[phi_s(t)] ) - ( (1/4) Integrate[(20T^2 + 20T + 3) phi_s(T)], {T,0,t}] )

phi_0 = 1, phi_-1 = 0

EXAMPLE

The polynomials phi_0, phi_1, phi_2 and phi_3 are:

1

-(t/12) (9 + 30t + 20t^2)

(t^2/288) (945 + 8028t + 19404t^2 + 18480t^3 + 6160t^4)

-(t^3/51840) (1403325 + 20545650t + 94064328t^2 + 200166120t^3 + 220540320t^4 + 122522400t^5 + 27227200t^6

MATHEMATICA

pktop = {1, -9, -30, -20};

pkbot = {1, 12};

p = (-t/12) (9 + (30 t) + (20 (t^2)));

Do[pk = -(4 (t^2) ((t + 1)^2)) D[p, t] - ((1/4) Integrate[((20 (t^2)) + (20 t) + 3) p, {t, 0, t}]);

p = Together[Simplify[pk]];

Do[pktop = Append[pktop, Coefficient[Expand[Numerator[p]], t^n]], {n, k, (2 k) + k, 1}];

pkbot = Append[pkbot, Denominator[p]];

Print[k], {k, 2, 10, 1}];

CROSSREFS

For denominators see A001164.

Sequence in context: A291159 A104516 A279618 * A179506 A185653 A326150

Adjacent sequences:  A158500 A158501 A158502 * A158504 A158505 A158506

KEYWORD

sign,tabf

AUTHOR

Chris Kormanyos (ckormanyos(AT)yahoo.com), Mar 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 12:37 EST 2020. Contains 338639 sequences. (Running on oeis4.)