login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158499
Expansion of (1+sqrt(1-4x))/(2-4x).
1
1, 1, 1, 0, -5, -24, -90, -312, -1053, -3536, -11934, -40664, -140114, -488240, -1719380, -6113200, -21921245, -79200160, -288045110, -1053728920, -3874721030, -14313562480, -53093391980, -197669347600, -738398308850, -2766700765024
OFFSET
0,5
COMMENTS
Hankel transform is A056594 with g.f. 1/(1+x^2).
Row sums of the Riordan array (sqrt(1-4x)/(1-2x),xc(x)^2), c(x) the g.f. of A000108.
The inverse Catalan transform yields A146559. - R. J. Mathar, Mar 20 2009
LINKS
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
FORMULA
a(n) = Sum_{k=0..n} binomial(2k,k)*A158495(n-k).
Conjecture: n*a(n) +6*(1-n)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
This conjecture has been proven. - Matthew House, Nov 08 2015
MATHEMATICA
CoefficientList[ Series[(1 + Sqrt[1 - 4x])/(2 - 4x), {x, 0, 26}], x] (* Robert G. Wilson v, Nov 08 2015 *)
PROG
(PARI) x='x+O('x^33); Vec(((1-4*x)+sqrt(1-4*x))/(2*(1-2*x)*sqrt(1-4*x))) \\ Altug Alkan, Nov 08 2015
CROSSREFS
Sequence in context: A089095 A220316 A220339 * A074085 A145914 A066316
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 20 2009
EXTENSIONS
Name edited by Matthew House, Nov 08 2015
STATUS
approved