OFFSET
0,5
COMMENTS
Hankel transform is A056594 with g.f. 1/(1+x^2).
Row sums of the Riordan array (sqrt(1-4x)/(1-2x),xc(x)^2), c(x) the g.f. of A000108.
The inverse Catalan transform yields A146559. - R. J. Mathar, Mar 20 2009
LINKS
Matthew House, Table of n, a(n) for n = 0..1669
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
FORMULA
a(n) = Sum_{k=0..n} binomial(2k,k)*A158495(n-k).
Conjecture: n*a(n) +6*(1-n)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
This conjecture has been proven. - Matthew House, Nov 08 2015
MATHEMATICA
CoefficientList[ Series[(1 + Sqrt[1 - 4x])/(2 - 4x), {x, 0, 26}], x] (* Robert G. Wilson v, Nov 08 2015 *)
PROG
(PARI) x='x+O('x^33); Vec(((1-4*x)+sqrt(1-4*x))/(2*(1-2*x)*sqrt(1-4*x))) \\ Altug Alkan, Nov 08 2015
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 20 2009
EXTENSIONS
Name edited by Matthew House, Nov 08 2015
STATUS
approved