OFFSET
1,1
COMMENTS
log(1/log((1+k)^(1/k))) = log(1/Hypergeometric2F1[1,1,2,-z]).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2294
MAPLE
a:= n-> ceil(-LambertW(-1, -exp(-n-exp(-n)))*exp(n)-1):
seq(a(n), n=1..40); # Alois P. Heinz, Mar 23 2017
MATHEMATICA
a = {}; k = 1; Do[If[N[Log[1/Log[(1 + n)^(1/n)]]] > k, Print[n]; AppendTo[a, n]; k = k + 1], {n, 1, 1000000}]; a
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 24 2008
EXTENSIONS
More terms from Indranil Ghosh, Mar 23 2017
a(16)-a(27) from Alois P. Heinz, Mar 23 2017
STATUS
approved