login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244129 Triangle read by rows: terms of a binomial decomposition of 0^(n-1) as Sum(k=0..n)T(n,k). 28
0, 1, 0, 2, -2, 0, 3, -12, 9, 0, 4, -48, 108, -64, 0, 5, -160, 810, -1280, 625, 0, 6, -480, 4860, -15360, 18750, -7776, 0, 7, -1344, 25515, -143360, 328125, -326592, 117649, 0, 8, -3584, 122472, -1146880, 4375000, -7838208, 6588344, -2097152 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

T(n,k)=(-k)^(k-1)*k^(n-k)*binomial(n,k) for k>0, while T(n,0)=0 by convention.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 1..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(11), with b=1.

EXAMPLE

First rows of the triangle, starting at row n=1. All rows sum up to 0, except the first one whose sum is 1:

0, 1,

0, 2, -2,

0, 3, -12, 9,

0, 4, -48, 108, -64,

0, 5, -160, 810, -1280, 625,

0, 6, -480, 4860, -15360, 18750, -7776,

PROG

(PARI) seq(nmax, b)={my(v, n, k, irow);

v = vector((nmax+1)*(nmax+2)/2-1);

for(n=1, nmax, irow=n*(n+1)/2; v[irow]=0;

  for(k=1, n, v[irow+k]=(-1)^(k-1)*(k*b)^(n-1)*binomial(n, k); ); );

return(v); }

a=seq(100, 1);

CROSSREFS

Cf. A244116, A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A255970 A011137 A143396 * A090657 A167001 A108563

Adjacent sequences:  A244126 A244127 A244128 * A244130 A244131 A244132

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 04:09 EDT 2017. Contains 286909 sequences.