login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244124 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k)*binomial(n,k). 28
0, 0, 1, 0, 2, -1, 0, 4, -3, 4, 0, 8, -9, 16, -27, 0, 16, -27, 64, -135, 256, 0, 32, -81, 256, -675, 1536, -3125, 0, 64, -243, 1024, -3375, 9216, -21875, 46656, 0, 128, -729, 4096, -16875, 55296, -153125, 373248, -823543, 0, 256, -2187, 16384, -84375, 331776, -1071875, 2985984, -7411887, 16777216 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

T(n,k)=(1-k)^(k-1)*(1+k)^(n-k) for k>0, while T(n,0)=0 by convention.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 0..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(6), with b=1 and a=1.

EXAMPLE

The first rows of the triangle are:

0

0 1

0 2  -1

0 4  -3  4

0 8  -9  16 -27

0 16 -27 64 -135 256

PROG

(PARI) seq(nmax, b)={my(v, n, k, irow);

  v = vector((nmax+1)*(nmax+2)/2); v[1]=0;

  for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;

    for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k); ); );

  return(v); }

  a=seq(100, 1)

CROSSREFS

Cf. A244116, A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A068527 A218599 A051623 * A183190 A296129 A276544

Adjacent sequences:  A244121 A244122 A244123 * A244125 A244126 A244127

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 18:49 EDT 2021. Contains 342853 sequences. (Running on oeis4.)