login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244125 Triangle read by rows: terms T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k). 28
0, 0, 1, 0, 4, -1, 0, 12, -9, 4, 0, 32, -54, 64, -27, 0, 80, -270, 640, -675, 256, 0, 192, -1215, 5120, -10125, 9216, -3125, 0, 448, -5103, 35840, -118125, 193536, -153125, 46656, 0, 1024, -20412, 229376, -1181250, 3096576, -4287500, 2985984, -823543 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

T(n,k)=(1-k)^(k-1)*(1+k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0 by convention.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 0..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(6), with b=1 and a=1.

EXAMPLE

First rows of the triangle, all summing up to 2^n-1:

1

0 1

0 4  -1

0 12 -9 4

0 32 -54 64 -27

0 80 -270 640 -675 256

PROG

(PARI) seq(nmax, b)={my(v, n, k, irow);

  v = vector((nmax+1)*(nmax+2)/2); v[1]=0;

  for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;

  for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n, k); ); );

  return(v); }

  a=seq(100, 1)

CROSSREFS

Cf. A244116, A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A145880 A048516 A060638 * A007789 A081114 A069018

Adjacent sequences:  A244122 A244123 A244124 * A244126 A244127 A244128

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 18 22:04 EDT 2017. Contains 290768 sequences.