login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244128 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 0^(n-1) as Sum(k=0..n)T(n,k)*binomial(n,k). 28
0, 1, 0, 1, -2, 0, 1, -4, 9, 0, 1, -8, 27, -64, 0, 1, -16, 81, -256, 625, 0, 1, -32, 243, -1024, 3125, -7776, 0, 1, -64, 729, -4096, 15625, -46656, 117649, 0, 1, -128, 2187, -16384, 78125, -279936, 823543, -2097152, 0, 1, -256, 6561, -65536, 390625, -1679616, 5764801, -16777216, 43046721 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

T(n,k)=(-k)^(k-1)*k^(n-k) for k>0, while T(n,0)=0 by convention. The flattened triangle start with row 1, coefficient T(1,0).

Resembles A076014, but with added powers of 0, and with sign-alternating columns.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 1..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(11), with b=1.

EXAMPLE

The first rows of the triangle (starting at n=1):

0, 1,

0, 1, -2,

0, 1, -4, 9,

0, 1, -8, 27, -64,

0, 1, -16, 81, -256, 625,

0, 1, -32, 243, -1024, 3125, -7776,

PROG

(PARI) seq(nmax, b)={my(v, n, k, irow);

v = vector((nmax+1)*(nmax+2)/2-1);

for(n=1, nmax, irow=n*(n+1)/2; v[irow]=0;

  for(k=1, n, v[irow+k]=(-1)^(k-1)*(k*b)^(n-1); ); );

return(v); }

a=seq(100, 1);

CROSSREFS

Cf. A076014, A244116, A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A173003 A294411 A274390 * A016584 A293961 A112899

Adjacent sequences:  A244125 A244126 A244127 * A244129 A244130 A244131

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 12:41 EDT 2018. Contains 313917 sequences. (Running on oeis4.)