login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244136 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k). 28
1, 0, 1, 0, 1, 2, 0, 4, 2, 9, 0, 27, 8, 9, 64, 0, 256, 54, 36, 64, 625, 0, 3125, 512, 243, 256, 625, 7776, 0, 46656, 6250, 2304, 1728, 2500, 7776, 117649, 0, 823543, 93312, 28125, 16384, 16875, 31104, 117649, 2097152, 0, 16777216, 1647086, 419904, 200000, 160000, 209952, 470596, 2097152, 43046721 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

T(n,k)=(k)^(k-1)*(n-k)^(n-k) for k>0, while T(n,0)=0^n by convention.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 0..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(13), with b=-1.

EXAMPLE

The first rows of the triangle are:

1,

0, 1,

0, 1, 2,

0, 4, 2, 9,

0, 27, 8, 9, 64,

0, 256, 54, 36, 64, 625,

PROG

(PARI) seq(nmax, b)={my(v, n, k, irow);

v = vector((nmax+1)*(nmax+2)/2); v[1]=1;

for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;

  for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k); ); );

return(v); }

a=seq(100, -1);

CROSSREFS

Cf. A244116, A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244137, A244138, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A068773 A340692 A234312 * A338212 A337451 A133168

Adjacent sequences:  A244133 A244134 A244135 * A244137 A244138 A244139

KEYWORD

nonn,tabl

AUTHOR

Stanislav Sykora, Jun 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 5 16:55 EST 2021. Contains 341827 sequences. (Running on oeis4.)