login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244118 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum(k=0..n)T(n,k)*binomial(n,k). 28
1, 0, 1, 0, -1, 3, 0, 1, -6, 16, 0, -1, 12, -48, 125, 0, 1, -24, 144, -500, 1296, 0, -1, 48, -432, 2000, -6480, 16807, 0, 1, -96, 1296, -8000, 32400, -100842, 262144, 0, -1, 192, -3888, 32000, -162000, 605052, -1835008, 4782969, 0, 1, -384, 11664, -128000, 810000, -3630312, 12845056, -38263752, 100000000 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

T(n,k)=(1+k)^(k-1)*(-k)^(n-k) for k>0, while T(n,0)=0^n.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 0..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(4), with b=-1.

EXAMPLE

The first rows of the triangle are:

1

0  1

0 -1   3

0  1  -6  16

0 -1  12 -48  125

0  1 -24 144 -500 1296

PROG

(PARI) seq(nmax, b)={my(v, n, k, irow);

  v = vector((nmax+1)*(nmax+2)/2); v[1]=1;

  for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;

    for(k=1, n, v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k); );

  ); return(v); }

  a=seq(100, -1);

CROSSREFS

Cf. A244116, A244117, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A143397 A341856 A339350 * A273155 A208345 A216807

Adjacent sequences:  A244115 A244116 A244117 * A244119 A244120 A244121

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 11 14:29 EDT 2021. Contains 342886 sequences. (Running on oeis4.)