login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244126 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k)*binomial(n,k). 28
0, 0, 1, 0, 0, 3, 0, 0, -3, 16, 0, 0, 3, -32, 125, 0, 0, -3, 64, -375, 1296, 0, 0, 3, -128, 1125, -5184, 16807, 0, 0, -3, 256, -3375, 20736, -84035, 262144, 0, 0, 3, -512, 10125, -82944, 420175, -1572864, 4782969, 0, 0, -3, 1024, -30375, 331776, -2100875, 9437184, -33480783, 100000000, 0, 0, 3, -2048, 91125, -1327104, 10504375, -56623104, 234365481, -800000000, 2357947691, 0, 0, -3, 4096, -273375, 5308416, -52521875 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

T(n,k)=(1+k)^(k-1)*(1-k)^(n-k) for k>0, while T(n,0)=0 by convention.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 0..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(6), with b=-1 and a=1.

EXAMPLE

The first rows of the triangle are:

0,

0, 1,

0, 0, 3,

0, 0, -3, 16,

0, 0, 3, -32, 125,

0, 0, -3, 64, -375, 1296,

PROG

(PARI) seq(nmax, b)={my(v, n, k, irow);

  v = vector((nmax+1)*(nmax+2)/2); v[1]=0;

  for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;

    for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k); ); );

  return(v); }

  a=seq(100, -1)

CROSSREFS

Cf. A244116, A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A079209 A279368 A021773 * A133109 A130208 A288654

Adjacent sequences:  A244123 A244124 A244125 * A244127 A244128 A244129

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 22 12:56 EDT 2017. Contains 290948 sequences.