The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244117 Triangle read by rows: terms of a binomial decomposition of 1 as Sum(k=0..n)T(n,k). 28
 1, 0, 1, 0, 2, -1, 0, 3, -6, 4, 0, 4, -24, 48, -27, 0, 5, -80, 360, -540, 256, 0, 6, -240, 2160, -6480, 7680, -3125, 0, 7, -672, 11340, -60480, 134400, -131250, 46656, 0, 8, -1792, 54432, -483840, 1792000, -3150000, 2612736, -823543, 0, 9, -4608, 244944, -3483648, 20160000, -56700000, 82301184, -59295096, 16777216 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS T(n,k)=(1-k)^(k-1)*k^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention. LINKS Stanislav Sykora, Table of n, a(n) for rows 0..100 S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(4), with b=1. EXAMPLE First rows of the triangle, all summing up to 1: 1 0 1 0 2  -1 0 3  -6   4 0 4 -24  48  -27 0 5 -80 360 -540 256 PROG (PARI) seq(nmax, b)={my(v, n, k, irow);   v = vector((nmax+1)*(nmax+2)/2); v[1]=1;   for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;     for(k=1, n, v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k)*binomial(n, k); );   ); return(v); }   a=seq(100, 1); CROSSREFS Cf. A244116, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143. Sequence in context: A077874 A286274 A230360 * A263426 A278882 A153007 Adjacent sequences:  A244114 A244115 A244116 * A244118 A244119 A244120 KEYWORD sign,tabl AUTHOR Stanislav Sykora, Jun 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 22:47 EDT 2021. Contains 342971 sequences. (Running on oeis4.)