login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244117 Triangle read by rows: terms of a binomial decomposition of 1 as Sum(k=0..n)T(n,k). 28
1, 0, 1, 0, 2, -1, 0, 3, -6, 4, 0, 4, -24, 48, -27, 0, 5, -80, 360, -540, 256, 0, 6, -240, 2160, -6480, 7680, -3125, 0, 7, -672, 11340, -60480, 134400, -131250, 46656, 0, 8, -1792, 54432, -483840, 1792000, -3150000, 2612736, -823543, 0, 9, -4608, 244944, -3483648, 20160000, -56700000, 82301184, -59295096, 16777216 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

T(n,k)=(1-k)^(k-1)*k^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 0..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(4), with b=1.

EXAMPLE

First rows of the triangle, all summing up to 1:

1

0 1

0 2  -1

0 3  -6   4

0 4 -24  48  -27

0 5 -80 360 -540 256

PROG

(PARI) seq(nmax, b)={my(v, n, k, irow);

  v = vector((nmax+1)*(nmax+2)/2); v[1]=1;

  for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;

    for(k=1, n, v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k)*binomial(n, k); );

  ); return(v); }

  a=seq(100, 1);

CROSSREFS

Cf. A244116, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A077874 A286274 A230360 * A263426 A278882 A153007

Adjacent sequences:  A244114 A244115 A244116 * A244118 A244119 A244120

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 24 21:38 EDT 2017. Contains 289777 sequences.