login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244138 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n*(n-1) as Sum(k=0..n)T(n,k)*binomial(n,k). 28
0, 0, 0, 0, 0, 2, 0, 0, 4, -6, 0, 0, 8, -18, 36, 0, 0, 16, -54, 144, -320, 0, 0, 32, -162, 576, -1600, 3750, 0, 0, 64, -486, 2304, -8000, 22500, -54432, 0, 0, 128, -1458, 9216, -40000, 135000, -381024, 941192, 0, 0, 256, -4374, 36864, -200000, 810000, -2667168, 7529536, -18874368 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

T(n,k)=k*(1-k)^(k-2)*k^(n-k) for k>1, while T(n,0)=T(n,1)=0 by convention.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 0..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(19), with a=1.

EXAMPLE

The first rows of the triangle are:

0,

0, 0,

0, 0, 2,

0, 0, 4, -6,

0, 0, 8, -18, 36,

0, 0, 16, -54, 144, -320,

0, 0, 32, -162, 576, -1600, 3750,

PROG

(PARI) seq(nmax)={my(v, n, k, irow);

v = vector((nmax+1)*(nmax+2)/2); v[1]=0;

for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; v[irow+1]=0;

  for(k=2, n, v[irow+k]=k*(1-k)^(k-2)*k^(n-k); ); );

return(v); }

a=seq(100);

CROSSREFS

Cf. A244116, A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A257813 A278280 A213370 * A284611 A282551 A056676

Adjacent sequences:  A244135 A244136 A244137 * A244139 A244140 A244141

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 25 06:13 EDT 2017. Contains 288709 sequences.