OFFSET
0,6
COMMENTS
T(n,k)=k*(1-k)^(k-2)*k^(n-k) for k>1, while T(n,0)=T(n,1)=0 by convention.
LINKS
Stanislav Sykora, Table of n, a(n) for rows 0..100
S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(19), with a=1.
EXAMPLE
The first rows of the triangle are:
0,
0, 0,
0, 0, 2,
0, 0, 4, -6,
0, 0, 8, -18, 36,
0, 0, 16, -54, 144, -320,
0, 0, 32, -162, 576, -1600, 3750,
PROG
(PARI) seq(nmax)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; v[irow+1]=0;
for(k=2, n, v[irow+k]=k*(1-k)^(k-2)*k^(n-k); ); );
return(v); }
a=seq(100);
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Stanislav Sykora, Jun 22 2014
STATUS
approved