login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244119 Triangle read by rows: terms of a binomial decomposition of 1 as Sum(k=0..n)T(n,k). 29
1, 0, 1, 0, -2, 3, 0, 3, -18, 16, 0, -4, 72, -192, 125, 0, 5, -240, 1440, -2500, 1296, 0, -6, 720, -8640, 30000, -38880, 16807, 0, 7, -2016, 45360, -280000, 680400, -705894, 262144, 0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

T(n,k)=(1+k)^(k-1)*(-k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention.

Sequence A161628, arising from a different context, appears to be the same, but with opposite signs of odd rows.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 0..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(4) with b=-1.

EXAMPLE

First rows of the triangle, all summing up to 1:

1

0  1

0 -2    3

0  3  -18   16

0 -4   72 -192   125

0  5 -240 1440 -2500 1296

PROG

(PARI) seq(nmax, b)={my(v, n, k, irow);

  v = vector((nmax+1)*(nmax+2)/2); v[1]=1;

  for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;

    for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(k*b)^(n-k)*binomial(n, k); );

  ); return(v); }

  a=seq(100, -1);

CROSSREFS

Cf. A161628, A244116, A244117, A244118, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143.

Sequence in context: A137663 A257740 A161628 * A122059 A164917 A166238

Adjacent sequences:  A244116 A244117 A244118 * A244120 A244121 A244122

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 22 12:56 EDT 2017. Contains 290948 sequences.