login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244141 Triangle read by rows: terms T(n,k) of a binomial decomposition of n*(-1)^n as Sum(k=0..n)T(n,k). 28
0, 0, -1, 0, 0, 2, 0, 0, 0, -3, 0, 0, 0, -12, 16, 0, 0, 0, -30, 160, -135, 0, 0, 0, -60, 960, -2430, 1536, 0, 0, 0, -105, 4480, -25515, 43008, -21875, 0, 0, 0, -168, 17920, -204120, 688128, -875000, 373248, 0, 0, 0, -252, 64512, -1377810, 8257536, -19687500, 20155392, -7411887 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

T(n,k)=(-1)^k*k*(k-2)^(n-2)*binomial(n,k) for k>1, while T(n,0)=0 and T(1,1)=-0^(n-1) by convention.

LINKS

Stanislav Sykora, Table of n, a(n) for rows 0..100

S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(21), with a=2, b=1.

EXAMPLE

First rows of the triangle, all summing up to n*(-1)^n:

0,

0, -1,

0, 0, 2,

0, 0, 0, -3,

0, 0, 0, -12, 16,

0, 0, 0, -30, 160, -135,

0, 0, 0, -60, 960, -2430, 1536,

PROG

(PARI) seq(nmax)={my(v, n, k, irow);

v = vector((nmax+1)*(nmax+2)/2); v[1]=0;

for(n=1, nmax, irow=1+n*(n+1)/2;

  v[irow]=0; if(n==1, v[irow+1]=-1, v[irow+1]=0);

for(k=2, n, v[irow+k]=(-1)^k*k*(k-2)^(n-2)*binomial(n, k); ); );

return(v); }

a=seq(100);

CROSSREFS

Cf. A244116, A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244142, A244143.

Sequence in context: A244140 A091227 A035444 * A152489 A143655 A173541

Adjacent sequences:  A244138 A244139 A244140 * A244142 A244143 A244144

KEYWORD

sign,tabl

AUTHOR

Stanislav Sykora, Jun 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 16:56 EDT 2017. Contains 288839 sequences.