login
A278280
T(n,k) = Number of n X k 0..1 arrays with every element both equal and not equal to some elements at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) or (1,0), with upper left element zero.
14
0, 0, 0, 0, 2, 0, 0, 4, 5, 0, 0, 13, 25, 16, 0, 0, 36, 122, 136, 49, 0, 0, 109, 661, 1461, 839, 153, 0, 0, 317, 3723, 15728, 16842, 5013, 476, 0, 0, 938, 20736, 172091, 350649, 196726, 30370, 1483, 0, 0, 2754, 115446, 1870365, 7466627, 7974561, 2293193
OFFSET
1,5
COMMENTS
Table starts
.0.....0.......0..........0.............0................0..................0
.0.....2.......4.........13............36..............109................317
.0.....5......25........122...........661.............3723..............20736
.0....16.....136.......1461.........15728...........172091............1870365
.0....49.....839......16842........350649..........7466627..........157609938
.0...153....5013.....196726.......7974561........329985827........13538466880
.0...476...30370....2293193.....180592726......14526103064......1158266740087
.0..1483..183403...26748095....4093629985.....640011857446.....99182079495633
.0..4619.1108525..311952675...92770708201...28192246592564...8491049196878995
.0.14388.6699034.3638315600.2102508396678.1241921389868057.726961954823301592
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-3) for n>4.
k=3: a(n) = 6*a(n-1) +3*a(n-2) -17*a(n-3) +19*a(n-5) -16*a(n-6) +8*a(n-7) for n>9.
k=4: [order 17] for n>19.
k=5: [order 44] for n>46.
k=6: [order 98] for n>101.
Empirical for row n:
n=2: a(n) = 2*a(n-1) +3*a(n-2) -a(n-3) +a(n-4).
n=3: [order 16].
n=4: [order 40].
EXAMPLE
Some solutions for n=4, k=4
..0..1..1..0. .0..1..0..1. .0..1..1..1. .0..1..0..1. .0..1..1..0
..0..0..1..0. .0..1..0..1. .0..0..0..0. .0..1..0..1. .0..0..1..0
..0..1..1..1. .0..1..0..1. .1..1..1..0. .0..0..0..1. .0..1..1..0
..0..0..0..0. .1..0..1..1. .1..0..0..1. .0..1..1..1. .1..0..0..1
CROSSREFS
Sequence in context: A117434 A131742 A257813 * A351403 A213370 A244138
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 16 2016
STATUS
approved