The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090657 Triangle read by rows: T(n,k) = number of functions from [1,2,...,n] to [1,2,...,n] such that the image contains exactly k elements (0<=k<=n). 11
 1, 0, 1, 0, 2, 2, 0, 3, 18, 6, 0, 4, 84, 144, 24, 0, 5, 300, 1500, 1200, 120, 0, 6, 930, 10800, 23400, 10800, 720, 0, 7, 2646, 63210, 294000, 352800, 105840, 5040, 0, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Another version is in A101817. - Philippe Deléham, Feb 16 2013 LINKS Alois P. Heinz, Rows n = 0..62, flattened C. M. Ringel, The Catalan combinatorics of the hereditary artin algebras, arXiv preprint arXiv:1502.06553, 2015 FORMULA T(n,k) = C(n,k) * k! * A048993(n,k). T(n,k) = A008279(n,k) * A048993(n,k). T(n,k) = C(n,k) * A019538(n, k). T(n,k) = C(n,k) * Sum_{j=0..k} (-1)^(k-j) * C(k,j) * j^n. T(n,k) = n * (T(n-1,k-1) + k/(n-k) * T(n-1,k)) with T(n,n) = n! and T(n,0) = 0 for n>0. T(2n,n) = A288312(n). - Alois P. Heinz, Jun 07 2017 EXAMPLE Triangle begins: 1; 0,  1; 0,  2,   2; 0,  3,  18,   6; 0,  4,  84, 144, 24; MAPLE T:= proc(n, k) option remember;       if k=n then n!     elif k=0 or k>n then 0     else n * (T(n-1, k-1) + k/(n-k) * T(n-1, k))       fi     end: seq(seq(T(n, k), k=0..n), n=0..10); MATHEMATICA Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 0, n}], {n, 0, 10}] // Flatten  (* Geoffrey Critzer, Sep 09 2011 *) CROSSREFS Row sums give: A000312. Columns k=0-2 give: A000007, A001477, A068605. Diagonal, lower diagonal give: A000142, A001804. Cf. A007318, A048993, A019538, A008279. Cf. A101817, A288312. Sequence in context: A011137 A143396 A244129 * A167001 A108563 A138476 Adjacent sequences:  A090654 A090655 A090656 * A090658 A090659 A090660 KEYWORD easy,nonn,tabl AUTHOR Philippe Deléham, Dec 14 2003 EXTENSIONS Revised description from Jan Maciak, Apr 25 2004 Edited by Alois P. Heinz, Jan 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 15:49 EDT 2020. Contains 336202 sequences. (Running on oeis4.)