OFFSET
0,5
COMMENTS
The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 4*(k-2)+1.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VIIIb.
FORMULA
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2),y) where G(x,y) + x is the g.f. of A342984.
EXAMPLE
Triangle begins:
1;
0, 1;
0, 2, 2;
0, 3, 15, 5;
0, 4, 60, 84, 14;
0, 5, 175, 650, 420, 42;
0, 6, 420, 3324, 5352, 1980, 132;
0, 7, 882, 13020, 42469, 37681, 9009, 429;
0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430;
...
PROG
(PARI) \\ here G(n, y) is A342984 as g.f.
F(n, y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
G(n, y)={my(g=F(n, y)); subst(g, x, serreverse(x*g^2))}
H(n)={my(g=G(n, y)-x, v=Vec(sqrt(serreverse(x/g^2)/x))); [Vecrev(t) | t<-v]}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
CROSSREFS
Row sums are A342988.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 03 2021
STATUS
approved