OFFSET
0,1
COMMENTS
For many choices of a and c, there are exactly two values of x satisfying a*x^2 + c = csc(x) and 0 < x < Pi. Guide to related sequences, with graphs included in Mathematica programs:
a.... c.... x
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A201564, take f(x,u,v)=u*x^2+v-csc(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
EXAMPLE
least: 0.4675809440634713673614192707668653885...
greatest: 3.0531517225248702118041550531781137...
MATHEMATICA
a = 1; c = 2;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .46, .47}, WorkingPrecision -> 110]
RealDigits[r] (* A201564 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
RealDigits[r] (* A201565 *)
(* Program 2: implicit surface of u*x^2+v=csc(x) *)
f[{x_, u_, v_}] := u*x^2 + v - Csc[x];
t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .1, 1}]}, {v, 0, 1}, {u, 2 + v, 10}];
ListPlot3D[Flatten[t, 1]] (* for A201564 *)
PROG
(PARI) a=1; c=2; solve(x=0.4, 0.5, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 03 2011
STATUS
approved